
# تعيين معامل انكسار مادة منشور ثلاثى عادي

#### فكرة التجربة:

نرسم شعاع ضوئي علي وجه المنشور ونعين (زاوية سقوطه  $\phi_1$ ) ثم نعين زاوية الخروج (الانكسار الثانية  $\theta_2$ ) ثم نعين زاوية الانكسار الأولى ولتكن  $\theta_1$  و بتطبيق قانون سنل نعين معامل انكسار مادة المنشور .



## <u>الأدوات :</u>

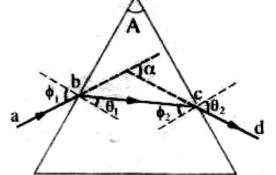
منشور ثلاثي عادي – مسطرة – منقلة – دبابيس – آله حاسبة

#### الخطوات :

- ١ نضع المنشور علي ورقة بيضاء ونحدد قاعدته المثلثة بالقلم الرصاص .
- ٢- نرفع المنشور ثم نعين بالمنقلة العمود المقام علي وجه المنشور المثلث الذي تم رسمه ويكون الخط في منتصف السطح الفاصل تقريباً.
- ٣- نرسم بالمسطرة خطاً مائلاً على وجه المنشور يمثل الشعاع الساقط وبالمنقلة نعين زاوية سقوطه ولتكن φ1.
- ٤- نثبت دبوسين علي الخط المائل ثم نعيد المنشور مرة ثانية و ننظر من الوجه المقابل لنري صورة الدبوسين
   الأوليّن لنضع دبوسين آخرين ليصبح الأربع دبابيس علي استقامة واحدة.
  - ه- نرفع المنشور مرة أخرى وكذلك الدبابيس و بالمسطرة يتم رسم خط مستقيم يصل موضع الدبوسين معاً
     ومع وجه المنشور ليمثل الشعاع الخارج .
    - ٦- بالمسطرة نصل موضع نقطتي الشعاع الساقط والشعاع الخارج معاً ليمثل الخط الواصل بينهما الشعاع
       المنكسر داخل المنشور .
  - . بالمنقلة نعين قيمة زاوية الانكسار الأولي ولتكن  $heta_1$  نطبق قانون سنل لتعين معامل انكسار مادة المنشور $heta_1$

#### النتائج:

| $\phi_1$ | $\phi_2$ | $\mathbf{n}_{\scriptscriptstyle 1}$ |
|----------|----------|-------------------------------------|
| 40°      | 35°      | 1                                   |


 $n_1 \sin \varphi_1$  ( فواء  $n_2 \sin \varphi_2$  ( زجاج )

$$n_2 = \frac{\sin \phi_1}{\sin \phi_2} = \frac{\sin 40}{\sin 35} = 1.52$$

# <u> حمّيق قوانين المنشور الثلاثي العادي</u>

### <u>فكرة التجربة:</u>

نرسم شعاع ضوئي علي وجه المنشور ونعين ( زاوية سقوطه  $\phi_1$  ) ثم نعين زاوية الخروج ( الانكسار الثانية  $\theta_1$  ثم نعين زاوية الانكسار الأولى ولتكن  $\theta_1$  و زاوية السقوط الثانية ولتكن  $\phi_2$  لتعيين كل من زاوية رأس المنشور ثم زاوية الانحراف  $\alpha$  .



## الأدوات:

منشور ثلاثي عادي – مسطرة – منقلة – دبابيس – آله حاسبة

## <u>الخطوات :</u>

- ١ نضع المنشور على ورقة بيضاء ونحدد قاعدته المثلثة بالقلم الرصاص .
- ٢- نرفع المنشور ثم نعين بالمنقلة العمود المقام علي وجه المنشور المثلث الذي تم رسمه ويكون الخط في
   منتصف السطح الفاصل تقريباً .
- $oldsymbol{\phi}$  نرسم بالمسطرة خطأً مائلاً علي وجه المنشور يمثل الشعاع الساقط وبالمنقلة نعين زاوية سقوطه ولتكن $oldsymbol{\phi}$  .
- ٤- نثبت دبوسين علي الخط المائل ثم نعيد المنشور مرة ثانية و ننظر من الوجه المقابل لنري صورة الدبوسين الأوليّن لنضع دبوسين آخرين ليصبح الأربع دبابيس على استقامة واحدة.
  - ه- نرفع المنشور مرة أخرى وكذلك الدبابيس و بالمسطرة يتم رسم خط مستقيم يصل موضع الدبوسين معاً
     ومع وجه المنشور ليمثل الشعاع الخارج .
    - ٦- بالمسطرة نصل موضع نقطتي الشعاع الساقط والشعاع الخارج معاً ليمثل الخط الواصل بينهما الشعاع المنكسر داخل المنشور .
      - ${f A}={f heta}_1+{f \phi}_2$  بالمنقلة نعين قيمة كل من  ${f \phi}_1$  ،  ${f \phi}_2$  لتعيين زاوية رأس المنشور حيث  $-{f v}$ 
        - $lpha = (\, \phi_1 \, + \, \, \theta_2 \, ) \, A$  ثم بالمنقلة نعين قيمة  $\, \, \theta_2 \,$  لتعيين زاوية الانحراف حيث  $\, \lambda \,$

### النتائج:

| $\theta_1$ | $\phi_2$ | A   | $\phi_1$ | $\theta_2$ | α   |
|------------|----------|-----|----------|------------|-----|
| 25°        | 35°      | 60° | 40°      | 55°        | 35° |

# تعيين الكثافة النسبية لسائل عملياً باستخدام الأنبوبة ذات الشعبتين

## فكرة التجربة:

تعيين طول عمود من السائل مجهول الكثافة النسبية ينشأ عنه ضغط يساوي الضغط الناشئ عن طول عمود الماء.

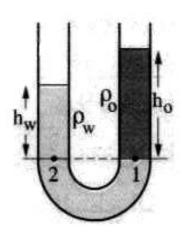
## الأدوات :

أنبوية ذات الشعبتين - ماء - سائل مجهول الكثافة النسبية - مسطرة .

#### <u>الخطوات :</u>

١- نضع كمية مناسبة من الماء في الأنبوبة ذات الشعبتين فيصبح ارتفاعه في الفرعين متساوياً .

٢-نصب السائل المراد تعيين كثافته النسبية ببطء في أحد الفرعيين حتى يتكّون سطح فاصل بينهما .


. الفاصل من ارتفاع الماء  $\mathbf{h}_{\mathrm{w}}$  و ارتفاع السائل المجهول  $\mathbf{h}_{\mathrm{o}}$  فوق السطح الفاصل-

 $\mathbf{P}_{\mathrm{w}} = \mathbf{P}_{\mathrm{o}}$ : ومن الشكل نلاحظ أن-8

 $Pa + h_o \rho_o g = Pa + h_w \rho_w g$  : إذاً

 $h_o \rho_o = h_w \rho_w$  : ومنها

$$\frac{\rho_o}{\rho_w} = \frac{h_w}{h_o} : \mathring{5}$$



| $\mathbf{h}_{\mathbf{w}}$ | $\mathbf{h}_{\mathrm{o}}$ |
|---------------------------|---------------------------|
| 16 cm                     | 20 cm                     |

#### بالتعويض :

$$\frac{\rho_{\rm o}}{\rho_{\rm w}} = \frac{h_{\rm w}}{h_{\rm o}} = \frac{16}{20} = 0.8$$

إذاً الكثافة النسبية للسائل المجهول = 0.8

## تعيين معامل التمدد الحجمي للهواء عت ضغط ثابت باستخدام جهاز شارل

## فكرة التجربة:

تعيين حجم كمية من الهواء بدلالة ارتفاع عمود الهواء عند درجة حرارة  $0^{
m o}{
m C}$  ،  $0^{
m o}{
m C}$  عند ثبوت ضغطة



## الأدوات:

جهاز شارل - جليد مجروش - مصدر بخار ماء

#### <u>الخطوات :</u>

ا – نملاً الغلاف الزجاجي بجليد مجروش و عندما تشير درجة حرارة الترمومتر  $0^{\circ}$  و الذي يعتبر إلي درجة  $0^{\circ}$  نأخذ قراءة ارتفاع عمود الهواء  $(V_{ol})_{0}^{\circ}$  والذي يعتبر مقياساً لحجم الهواء  $(V_{ol})_{0}^{\circ}$ 

٢- نفرغ الغلاف الزجاجي من الجليد المجروش المتبقي ثم يتم ضخ بخار ما
 يغلي من أعلي لأسفل وعندما تشير درجة حرارة الترمومتر إلي درجة

.  $(V_{ol})_{100}{}^{o}{}_{C}$  نأخذ قراءة ارتفاع عمود الغاز  $(L_{100}{}^{o}{}_{C})$  والذي يعتبر مقياساً لحجم الهواء  $(L_{100}{}^{o}{}_{C})$ 

. علي المحور الرأسي و درجة الحرارة  $\mathbf{T}^{\mathrm{o}}$  فنحصل علي خط مستقيم .  $\mathbf{T}^{\mathrm{o}}$ 

## النتائج:

| $\mathbf{L_{0}^{o}_{C}}$ | $(\mathbf{V_{ol}})_{0}{}^{o}{}_{\mathbf{C}}$ | $ m L_{100}^{o}{}_{C}$ | $(\mathbf{V_{ol}})_{100}{}^{\mathrm{o}}{}_{\mathrm{C}}$ |
|--------------------------|----------------------------------------------|------------------------|---------------------------------------------------------|
| 43.92 cm                 | $43.92 \text{ cm}^3$                         | 60 cm                  | 60 cm <sup>3</sup>                                      |

من النتائج السابقة يتم التعويض في العلاقة التالية:

$$\alpha_{v} = \frac{(V_{ol})_{100}^{o}_{C} - (V_{ol})_{0}^{o}_{C}}{(V_{ol})_{0}^{o}_{C} \times \Delta t}$$

$$\alpha_{\rm v} = \frac{60 - 43.92}{43.92 \times 100} = 3.66 \times 10^{-3} \,{\rm K}^{-1}$$

$$\alpha_v = \frac{1}{273} \text{ K}^{-1}$$

# تعيين معامل زيادة الضغط للهواء <u>حّت حجم ثابت باستخدام جهاز جولى</u>





تعيين ضغط كمية من الهواء بدلالة ارتفاع عمود الزئبق في الأنبوبة الخالصة عند درجة حرارة  $0^{\circ}$ C ،  $0^{\circ}$ C عند ثبوت حجمه .

## الأدوات :

جهاز جولي – جليد مجروش – حوض – موقد – ترمومتر – مسطره الفطمات .

 $\frac{1}{7}$  بهيئ جاهز جولي بأن يكون الهواء المحبوس جاف مع وضع حجم الانتفاخ الزجاجى زئبق ليظل حجم الهواء ثابت أثناء التجربة

٢-نعين الضغط الجوي وقت إجراء التجربة باستخدام الترمومتر الزئبقي.

 ${f X}$  -نعدل من الوضع الرأسي للأنبوبة الخالصة الحاوية للزئبق لتحبس حجم معين من الهواء نحدده بالعلامة  ${f X}$  بالمسطرة .

 $0^{\circ}\mathrm{C}$  نغمر الانتفاخ الزجاجي في حوض به جليد مجروش حتى تصل درجة حرارة الهواء المحبوس إلي  $P_0{}^{\circ}\mathrm{C} = P_a \pm h$  ثم نحرك الأنبوبة الخالصة لأسفل حتى نعيد حجم الهواء للعلامة X ثم نعين الضغط  $P_0{}^{\circ}\mathrm{C} = P_a \pm h$  ثم نحرك  $P_0{}^{\circ}\mathrm{C} = P_a \pm h$  ثم نحرك  $P_0{}^{\circ}\mathrm{C} = P_a \pm h$  ثم نعين الضغط  $P_0{}^{\circ}\mathrm{C} = P_a \pm h$  الأنبوبة الخالصة لأعلى حتى نعيد حجم الهواء للعلامة  $P_0{}^{\circ}\mathrm{C} = P_a \pm h$  فنحصل على خط مستقيم .  $P_0{}^{\circ}\mathrm{C} = P_a$ 

#### النتائج:

| $h_0^{0}$ C | $P_0^{0}C$ | $\mathbf{h_0}^{\mathbf{o}}_{\mathbf{C}}$ | P 100 °C |
|-------------|------------|------------------------------------------|----------|
| 33 cmHg     | 33 cmHg    | 55 cmHg                                  | 55 cmHg  |

من النتائج السابقة يتم التعويض في العلاقة التالية:

$$\begin{split} \beta_P &= \frac{P_{100}{}^{o}{}_{C} - P_{0}{}^{o}{}_{C}}{P_{0}{}^{o}{}_{C} \times \Delta t} \\ \beta_P &= \frac{55 - 33}{33 \times 100} = 3.66 \times 10^{-3} \text{ K}^{-1} \\ \beta_P &= \frac{1}{273} \text{ K}^{-1} \end{split}$$