

Preparatory

(1) Complete:

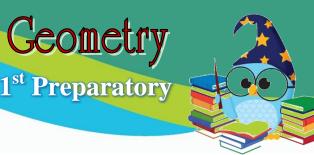
.


- 1) The square is a rectangle in which
- 2) ABDC in a parallelogram in which m (\angle A) = 60°, then m (\angle B) =
- 3) The sum of measures of the angles of the quadrilateral equals
- 4) The ray drawn parallel to one side of a triangle and passing through the mid-point of another side
- 5) The rhombus is a parallelogram in which
- 6) Each two opposite angles in a parallelogram are
- 7) The line segment joining the midpoint of two sides of a triangle is
- 8) The quadrilateral is a parallelogram if
- 9) The parallelogram whose diagonals are perpendicular in
- 10) If the measure of an interior angle of a triangle is equals to the sum of the measures of the other two interior angles, then the triangle is
- 11) Any triangle has at least two interior angles.
- 12) The measure of the exterior angle of a triangle is
- 13) The parallelogram whose diagonals are perpendicular and equal in length is
- 14) The sum of measures of the interior angles of a hexagon equals

1

•••••

.


- 16) The parallelogram whose perimeter 24 cm and the length of its sides is 7 cm. Then the length of the adjacent side equal
- 17) If ABCD is a rhombus, then $\dots \perp$
- 18) In the parallelogram XYZL, if m (x) = $\frac{1}{2}$ m (\angle Y) then m (\angle Y) =.....°

Preparatory

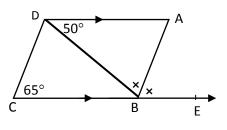
- 19) Each of the two diagonals of the makes an angle of measure 45° with the adjacent side.
- 20) The side length of a rhombus whose perimeter 42 cm equals cm.
- 21) The sum of measure of interior angles of pentagon =
- 22) The measure of one interior angle of regular pentagon =
- 23) The number of sides of regular polygon if the measure of one interior angle 144° =
- 24) The number of the diagonals of a pentagon is
- 25) The measure of each angle of regular hexagon equals
- 26) If the measure of an angle of a triangle is greater than the sum of the other two angles then the triangle is
- 27) The sum of measure of the exterior angles of a triangle equals

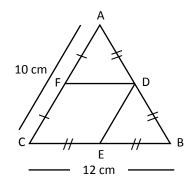
-
- 28) The measure of any of the exterior angle of an equilateral triangle equals

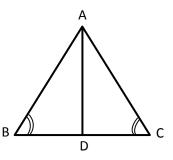
(2) In the opposite figure:

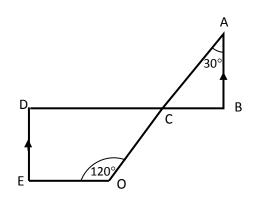
 $\overrightarrow{DA} // \overrightarrow{BE}$, BA bisect \angle DBE , m (\angle ADB) = 50°, m (\angle C) = 65° Prove that ABCD is a parallelogram

(3) In the opposite figure:

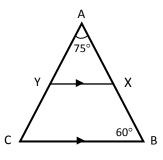

ABC is a triangle in which D,E and F are midpoints of \overline{AB} , \overline{BC} and \overline{CA} respectively BC = 12 cm , AC = 10 cm Find the perimeter of the quadrilateral DECF


(4) In the opposite figure:

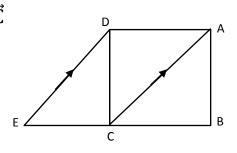

ABC is a triangle, m (\angle B) = m (\angle C) and \overrightarrow{AD} is the bisector of \angle A prove that: AB = AC

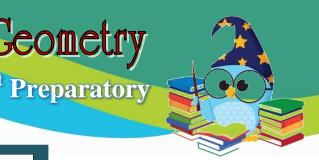

(5) In the opposite figure:

 \overline{AB} , \overline{ED} are perpendicular to \overline{BD} , $\overline{BD} \cap \overline{A0} = \{ C \}$ m ($\angle A$) = 30°, m ($\angle EOC$) = 120° Find m ($\angle E$)



(6) In the opposite figure:

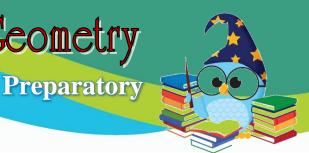

ABC is a triangle in which m (\angle A) = 75° m (\angle B) = 60°, X $\in \overline{AB}$ and Y $\in \overline{AC}$ such that: \overline{XY} // \overline{BC} Find: m (\angle AYX)


(7) In the opposite figure:

ABCD is a square. Draw $\overrightarrow{DH} // \overrightarrow{AC}$ to intersect \overrightarrow{BC} at H

- 1- Prove that: CH = BC
- 2- Find: m (\angle ADH)

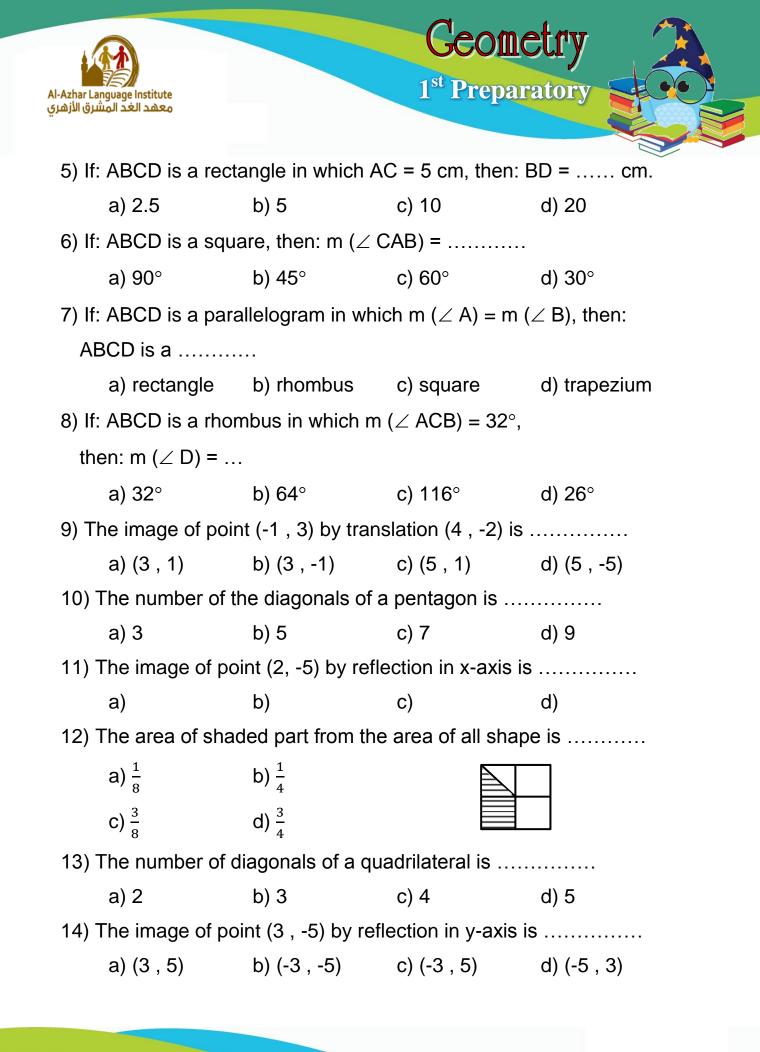
(1) Complete:


- 1) The sum of measures of the interior angles of a polygon is $18 \times 180^{\circ}$ then the number of its sides is
- 2) The ray drawn from a midpoint of a side of a triangle parallel to another side then
- 3) \triangle ABC, if m (\angle A) + m (\angle B) = m (\angle C) then m (\angle C) =°
- 4) The line segment joining the midpoints of two sides of a triangle is and its length is equal to
- 5) The regular polygon is
- 6) The regular polygon is
- 7) The image of (-3, 7) by rotation about the origin with an angle of measure 180° is
- 8) The point (4, 2) is the image of by reflection on y-axis.
- 9) The image of (-2, 2) by translation (x, y) \rightarrow (x + 4, y 2) is
- 10) The sum of the measures of the exterior angles of a convex polygon the number of its sides n is
- 11) Measure of the interior angle of the regular hexagon is
- 12) The image of point (2, 1) by reflection in x-axis is
- 13) The image of point (2, -1) by rotation about the origin 180° is
- 14) (-3, 2) is the image of point (3, 2) by reflection in axis.
- 15) The image of point (4, 6) by transformation (x, y) \rightarrow (-x , y 7) is

5

Second term Final Revision

.

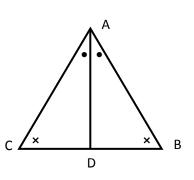


- 16) The image of point (5, -3) by translation 3 units in negative direction of x-axis is
- 17) The image of the point (2, 3) by translation MN in direction MN where M (2, -1), N (5, 1) is

(2) Choose the correct answer from the given ones:

- 1) The two diagonals of a rectangle
 - a) are perpendicular
 - b) are equal in length.
 - c) are perpendicular and equal in length.
 - d) bisect its interior angles
- 2) The two diagonals of a rhombus are
 - a) perpendicular and are not equal.
 - b) equal in length and are not perpendicular.
 - c) perpendicular and equal in length.
 - d) not equal in length and are not perpendicular.
- 3) The two diagonals of the square, are
 - a) just perpendicular.
 - b) just equal in length
 - c) perpendicular and equal in length
 - d) not equal in length and are not perpendicular
- 4) If two adjacent sides are equal in length in a parallelogram, then the figure is a
 - a) square b) rhombus c) rectangle d) trapezium


```
Second term Final Revision
```



(3) a) In the opposite figure:

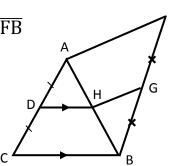
In \triangle ABC, m (\angle B) = m (\angle C) D $\in \overline{CD}$ such that: \overrightarrow{AD} bisects (\angle BAC) Prove that: AB = AC

b) In the opposite figure:

 $\overrightarrow{\text{DH}}$ // $\overrightarrow{\text{BC}}$, m (\angle ABC) = 40°

m (\angle HAD) = 70°, A $\in \overline{\text{DC}}$

H 70° D A C 40° B

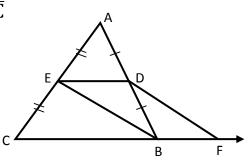

Find: m (\angle BAC)

c) In the opposite figure:

 Δ ABC and D, E, F are midpoints of \overline{AB} , \overline{BC} , \overline{CA} respectively FD = 3 cm, DE = 4 cm, FE = 5 cm Find the perimeter of Δ ABC

d) In the opposite figure:

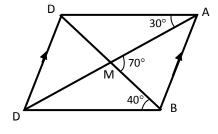
D is a midpoint of \overline{AC} , O is a midpoint of \overline{FB} \overline{DH} // \overline{CB} Prove that: \overline{HO} // \overline{AF}

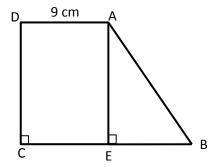


e) In the opposite figure:

 \triangle ABC, X, Y are the midpoint of \overline{AB} , \overline{AC} respectively, $H \in \overrightarrow{CB}$ where BH = BCProve that:

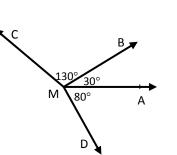
XHBY is a parallelogram.


f) In the opposite figure:


Find with proof:

m (\angle CMD)

 $\overline{AC} \cap \overline{BD} = \{M\},\$ $\overline{AB} // \overline{DC}, m (\angle AMB) = 70^{\circ},\$ $m (\angle MBC) = 40^{\circ}and m (\angle MAD) = 30^{\circ}$ Prove that: ABCD is a parallelogram

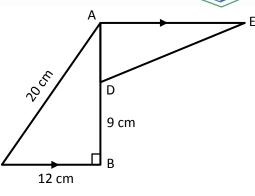

(4) In the opposite figure:

ABCD is a trapezium, where

 $\overline{\text{AD}} / / \overline{\text{BC}}$, m (\angle DCB) = 90°

 $\overline{\text{AE}} \perp \overline{\text{BC}}$, AB = BC = 17 cm , AD = 9 cm

Find the length of DC, the area of trapezium



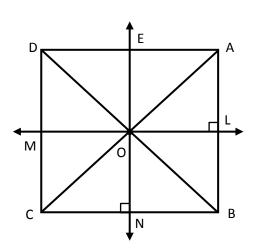
C

(5) In the opposite figure:

 \triangle ABC , m (\angle B) = 90° , \overline{AE} // \overline{BC} If BC = 12 cm , AC = 20 cm, D $\in \overrightarrow{AB}$ BD = 9 cm, AE = 2 BC Find the length of \overline{AD} , \overline{ED}

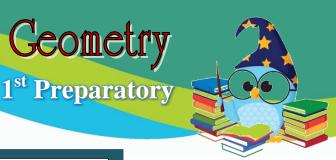
(6) In the opposite figure:

ABC is a triangle m (\angle B) = 90°, D \in \overline{AB} , AD = 11 cm if BC = 12 cm, DC = 13 cm Find the length of \overline{BD} , \overline{AC}


C 13 cm D B

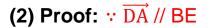
(7) Find:

a) The image of Δ AOL by translation


3 cm in direction \overrightarrow{AB}

- b) Find the image of Δ AOL by reflection in $\overleftarrow{\text{EN}}$
- c) Find the image of \triangle AOL by rotation about O with angle (-90°)

- (8) Draw the right angled triangle ABC at B, where AB = 3 cm, BC = 4 cm find the image by translation of magnitude 4 cm in direction \overrightarrow{BC}
- (9) Find the image of \triangle AOB where A (4, 1), B (1, 5), C (0, 0) by rotation about the origin with an angle 90°



Part (1)

(1) Complete:	
1) Diagonals are perpendicular	
2) 120°	3) 360°
4) bisect the third side	
5) diagonals are perpendicular	
6) equal in measure	7) parallel to the third side
8) each two opposite sides are equal and parallel	
9) rhombus	10) right-angled triangle
11) acute	
12) equal to the sum of the measure of the other two interior	
opposite angles.	
13) square	14) 720°
16) 5 cm	17) AC ⊥ BD
18) 120°	19) rectangle
20) 10.5 cm	21) 540°
22) 108°	23) $\frac{360}{180-144}$ = 10 sides
24) 2 diagonals	25) 120°
26) obtuse angled	27) 360°

28) 120°

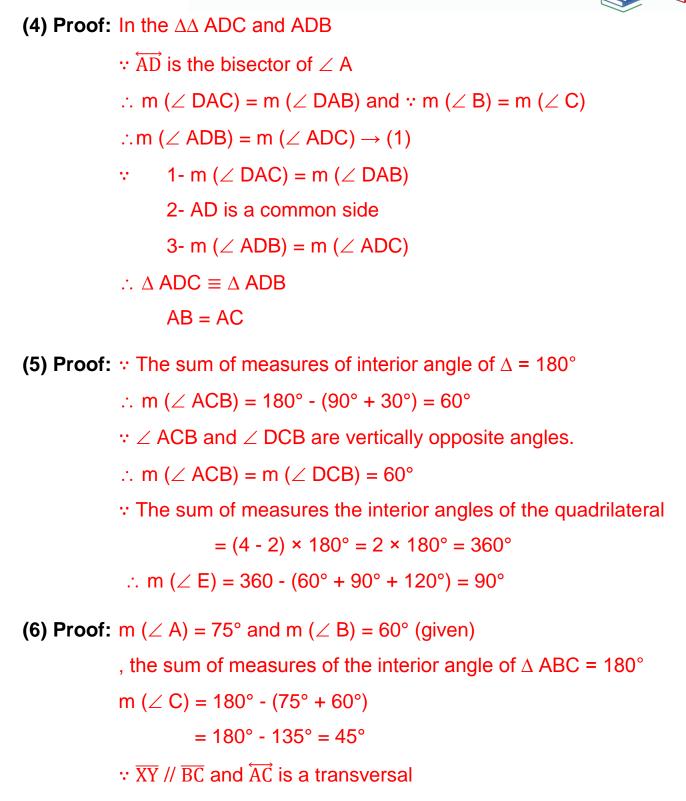
 \therefore m (\angle DBC) = m (\angle ADB) = 50° (alternate angles)

Geome

1st Preparatory

- \therefore (\angle CBE) is a straight angle
- ∴ m (∠ DBE) = 180° 50° = 130°
- $:: \overrightarrow{\text{BE}} \text{ bisect} \angle \text{DBE}$
- \therefore m (\angle ABD) = 130° ÷ 2 = 65°
- ∴ m (∠ ABC) = 50° + 65° = 115°
- ∵ m (∠ C) + m (∠ ABC) = 115° + 65° = 180°,

and they are interior angles


- $\therefore \overrightarrow{AB} // \overrightarrow{CD}$
- $: \overrightarrow{AB} / / \overrightarrow{CD} \And \overrightarrow{AD} / / \overrightarrow{BC}$
- : ABCD is a parallelogram
- (3) Proof: : D is the midpoint of \overline{AB} , F is the midpoint of \overline{AC}
 - $\therefore \overline{\text{DF}} // \overline{\text{BC}}$, $\text{DF} = \frac{1}{2} \text{BC} = 6 \text{ cm}$
 - \because D is the midpoint of $\overline{\text{AB}}$, E is the midpoint of $\overline{\text{BC}}$

$$\therefore \overline{DE} // \overline{AC} , DE = \frac{1}{2} AC = 5 cm$$
$$\therefore FC = \frac{1}{2} AC , Ac = \frac{1}{2} CB$$

... The perimeter of the quadrilateral DECF

= 6 + 5 + 6 + 5 = 22 cm

Geome

1st Preparatory

m (\angle AYX) = m (\angle C) = 45° (corresponding angles)

Geometry

1st Preparatory

(7) **Proof:** \therefore AD // BC (two opposite sides in the square)

and $H \in \overrightarrow{BC}$

 $\therefore \overline{\text{AD}} // \overline{\text{CH}}$

 $:: \overline{DH} // \overline{AC}$ (given)

 \therefore ACHD is a parallelogram \therefore CH = AD

But AD = BC (two opposite side in the square)

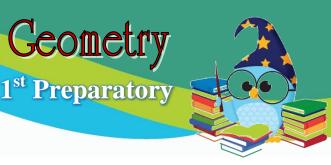
 \therefore CH = BC

 \therefore AC is a diagonal in the square

 $: \overrightarrow{CA} \text{ bisects} \angle BCD$

 \therefore m (\angle ACD) = 90° ÷ 2 = 45°

 $:: \overrightarrow{\text{DH}} // \overrightarrow{\text{AC}} \& \overrightarrow{\text{CD}}$ is their transversal


 \therefore m (\angle CDH) = m (\angle ACD) = 45° (Two alternate angles)

, ∵ (∠ ADC) = 90°

 \therefore m (\angle ADH) = m (\angle ADC) + m (\angle CDH)

 $= 90^{\circ} + 45^{\circ} = 135^{\circ}$

2) its length = half of the third side

6) has sides equals in length

4) Parallel - half

8) (-4,2)

12)(2, -1)

16) (2, -3)

10) 360°

14) y

1) Complete :

1`	20
-	

- 3) 90°
- 5) has sides equals in length
- 7) (3,-7)
- 9) (2,0)
- 11) 720°
- 13) (-2 , 1)
- 15) (-4 , -1)
- 17) (5,5)

2) Choose :

- 1) equal in length
- 2) Perpendicular and not equal
- 3) Perpendicular and equal in length
- 4) Rhombus5) 56) 457) rectangle8) 1169) (3, 1)10) 511) (2, 5)12) $\frac{3}{8}$ 13) 214) 215) (-3, -5)

<u>(3)</u>

- A) Proof by yourself
- B) m (< BAC) = 70
- C) Perimeter of \triangle ABC = 24 cm
- D) Try by yourself
- F) m (< CMD) = 120°
- G) Proof by your self

(4)

 $\therefore (AE)^{2} = (AB)^{2} - (EB)^{2}$ = 17² - 8² (AE)² = 289 - 64 = 225 AE = $\sqrt{225}$ = 15 cm Area of \triangle AEB = $\frac{1}{2} \times 17 \times 8 = 68 \text{ cm}^{2}$ Area of rectangle AECD = 9 × 15 = 135 cm² Area of trapezium = 68 + 135 = 203 cm² \therefore m ∠ AEB = m ∠ DCE = 90° $\therefore \overline{DA} //\overline{CB}$ \therefore AECD is a rectangle \therefore AE = DC = 15 cm

(5) In
$$\triangle ABC \rightarrow right \triangle$$

 $(AB)^2 = (AC)^2 - (CB)^2$
 $= 400 - 144 = 256$
 $AC = \sqrt{256} = 16 \text{ cm}$
 $AD = 16 - 9 = 7 \text{ cm}$
 $\therefore AE = 2 BC$
 $\therefore AE = 12 \times 2 = 24 \text{ cm}$
In $\triangle AED \rightarrow right \triangle$
 $(ED)^2 = (AD)^2 + (AE)^2$
 $= 7^2 + 24^2$
 $= 49 + 576 = 625$
 $ED = \sqrt{625} = 25 \text{ cm}$
(6) In $\triangle BDC \rightarrow right \triangle$
 $(BD)^2 = (CD)^2 - (CB)^2$
 $= 13^2 - 12^2$
 $= 169 - 144 = 25$
 $BD = \sqrt{25} = 5 \text{ cm}$
 $AB = 11 + 5 = 16 \text{ cm}$
In $\triangle ABC \rightarrow right \triangle$
 $(AC)^2 = (AB)^2 + (BC)^2$
 $= 16^2 + 12^2$
 $= 256 + 144 = 400$
 $AC = \sqrt{400} = 20 \text{ cm}$
(7) a) $\triangle BLO$ b) $\triangle DOM$ c) $\triangle ONB$

17