

10	If = $10^{(x^2-1)}$,	then $\frac{dy}{dx} = \cdots$		
	(a) $10^{(x^2-1)} \times \ln x$	10	(b) $2x \times 10^{(x^2-1)}$	
	(c) $2x \times 10^{(x^2-2)}$)	(d) $2x(\ln 10) \times 10$	(x^2-1)
(II)	If $f(\mathbf{r}) - \mathbf{r} \sin \mathbf{r}$	then $f \setminus (r) +$	$f(\mathbf{r}) = \dots$	
U	$ a) 2\cos x $	(a) + (b) zero	\odot - sin x	
12	If $x = 5 + \sec^2 3$	θ , $y = 1 - tan 3$	θ , then $\frac{dy}{dx} = \cdots$	at $\theta = \frac{\pi}{4}$
	a 2	b -2	$\bigcirc \frac{1}{2}$	$(d) - \frac{1}{2}$
13 1	If $x = 5 + \sec^2$ relationn between	3θ , $y = 1 - tan$ x and y is	3θ, then the impl	icit
	(a) $x^2 = y + 5$ (c) $x^2 + y^2 = 6$		(b) $x^2 + y^2 = 5$ (c) $x - 6 = (1 - y)$)2
14	If $(x + y)^8 = 7$,	, then $\frac{d^2y}{dx^2} = \cdots$		
	a 1	(b)zero		(d) -1
15	$\mathrm{If}\frac{dy}{dx}=2x-3,\frac{dx}{dx}$	$\frac{z}{x} = x^2 - 1$, then $\frac{d}{d}$	$\frac{2^2y}{z^2} = \cdots = at x = 2$	
	(a) $\frac{2}{27}$	(b) $\frac{2}{9}$	© zero	(d) $-\frac{2}{9}$
16	If $y = \ln(x+2)$, then $\frac{d^{2018}y}{dx^{2018}} = \cdots$		
	a) $\frac{ 2017 }{(x+2)^{2018}}$	$(b) \frac{- 2017}{(x+2)^{2018}}$	$\odot \frac{ 2018 }{(x+2)^{2018}}$	
1	If $f(x) = \ln \sin x$	$x - \ln \cos x$, then	$\lim_{x \to \frac{\pi}{4}} \frac{f(x) - f\left(\frac{\pi}{4}\right)}{x - \frac{\pi}{4}} =$	
	a 1	b 2	© zero	d -2
18	If $x \sin 2y = y \cos 2y$	$\cos 2x$, then $\frac{dy}{dx} =$	$\cdots \cdots$ at the point $\left(\frac{\pi}{4}\right)$	$\left(\frac{\pi}{2}\right)$
	(a) zero	(b) 1	© 2	(d) 3

2

3 sec

Differential & integral Calculus

GEOMETRICAL APPLICATIONS

If the slope of the tangent to the curve y = f(x) at a point = ¹/₂ and the x-coordinate of this point decreases at a rate of 3 units /sec, then the rate of change of its y-coordinates equals units /sec.
 a) ⁻¹/₆
 b) ⁻³/₂
 c) ¹/₆
 d) ³/₂

2 The ratio between the slope of the curve of the function y = ln 3√x + 1 and the slope of the curve of the function y = ln 5√x + 1 at x = a is
(a) 3:5 (b) 5:3 (c) 1:1 (c) ln 3:ln 5

③ The equations of the tangent to the curve of the function: f(x) = e^{2x+1} at the point(⁻¹/₂, 1) is
ⓐ 2y = x + 1 ⓑ y = 2x + 2 ⓒ y = 2x - 3 ⓓ 2y = 3x + 1

) The slope of the tangent to the curve of the function $y = \ln\left(\frac{1}{2}x\right)$ at x = 4 is .

(4) The slope of the tangent to the curve of the function $y = \ln(\frac{1}{2}x)$ at x = 4 is (a) $\frac{1}{8}$ (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) 4

(5) The equations of the inflection tangent to the curve of the function: f(x) = x³ + 3x² + 2is
(a) y = -6x - 6
(b) y = -3x + 1
(c) y = 2x + 10
(d) y = 3x - 1

(6) If the straight line y + x = k is a tangent to the curve of the Function y = x² + 3x + 1, then k =
(a) -3
(b) -2
(c) -1
(d) zero

(7) If $y = \ln(x^2 + y^2)$, then the slope of the tangent to the curve at the point (1,0) equals

5

	3 sec[Diff	erential & integral Calcul	us
5	An embty conta	iner, its volume	cm ³ , water is po	ured in it at a rate 5cm ³ /	sec,
	a 9	b 225	© 18	(d) 6	
6	A traiangle, the	e length of its bas	 e B is increased b	y 3 cm / sec while its heigh	nt H
	decreases by 3 c	cm / sec, and its s	urface area is A ,	thenthe phrase that is cert	ain
	(a) A is always i	the following:			
	b A is always of	lecreasing.			
	C A is only dec	creasing when B >	> H		
	d A is only dec	ereasing when B <	< H		
7	If the perimeter of area increases by equals	of lamina in a square $6 \text{ cm}^2 / \text{sec}$, then	are-form increases n, the length of the	by 0.4 cm/sec and its surface lamina edge at that momen	ce nt
	(a) 30	b 50	© 40	(d) 60	
8	If the rate of incr of diameter is 4 c cm ³ /sec	ease the diameter cm, then the rate c	of a balloon is equ of change in its volu	al to 1 cm/min when the len ume at that moment equals	ngth
	(a) 2π	b 8π	© 16π	(d) 4π	
9	A point moves of equal to the spee point equals (a) 1	in the curve $y = x^2$ and of its $y - coord$. b 2	$x^2 - 3x$. If the speed dinate, the slope of $\odot 3$	1 of its $x - coordinate$ is the tangent to the curve at t (d) 4	that
• •					
BE BE	If the function	$\frac{\mathbf{L} + \mathbf{U} $	1 has an inflaction	x = 2 then the $x = 2$	ماير
U	of $k =$	f(X) = X + KX +	4 has an innection	x = 2 then the value of x = 2	aiue
	a -6	(b) -3	© 3	(d) 6	
2	If $x \in \mathbb{R}$ then the	e maximum value	of $4x - x^2$ is		
•	a 4	b 8	© 16	d 32	
8	The curve of the	e function $F(x) =$	$x^{3} - 3x^{2} + 2$ is co	nvex upwards when $x \in \dots$	
-	ⓐ]–∞,0[ⓑ]–∞ , 1[́	©]1,3[]1 , ∞[
D	ifferential & inte	gral Calculus	6	ئتب مستشار الرياضيات	Ka

4	The	e function F (2	$x = x^3 - 3x^2 + 5$ is a	lecreasing on the inte	erval
	(a)]0 , 3[(b)]0, 2[©[0, 2]	$(\mathbf{d}) \mathbb{R} - [0, 2]$
6	If I max	$F'(x) = ax^3 - x$ imum point t	 8 <i>b</i> where a , b are co he <i>a</i> × <i>b</i> ∈	nstants and the point	(2, 5) is A local
	a]2,∞[ⓑ]0,∞[©]–∞ , 0[@]8 ,∞[
6	If x	$x, y \in \mathbb{R}^+$ when	re x + y = k then xy	is maximum when .	
	a	x = ky	(b) $y = kx$	C x = y	
0	If I	F(x) is a continuous	inuous function on $\mathbb R$	then the true statem	ent in each of the
	a	(<i>a</i> , <i>F</i> (<i>a</i>)) is a	 a critical point if F '(a	a) = 0	
	b	(a , F (a)) is a	n infliction point if I	F''(a) = 0	
	©	if $F'(a) = 0$	then $F(a)$ is a local 1	maximum value.	1
	Ø	11 $F'(a) = 0$	and $F''(a) \succ 0$ then	F(a) is a local minin	num value.
8	If I	F(x) is a conti	inuous function on ${\mathbb R}$	then the true stateme	ent in each of the
	foll	lowing is			
	(a)	(a, F(a)) is a	in infliction point if I	F''(a) = 0 or F''(a)	undefined.
	0 O	(a, F(a)) is a	in infliction point if I	F''(a) = 0 and $F''(a)$	$F''(a^+) \prec F''(a^-) \prec 0$
	(d)	(a, F(a)) is a $(a, F(a))$ is a	in infliction point if I	F'(a) exist and $F''(a)$	$(a) \times F''(a) \to 0$
9	If I	$F(x) = -x^3 + $	$6x^{2} + 2x + 1$ then the	greatest value of the	slope of tangent to this
	cur	ve is		0	-
1	(a)	14	(b) 16	© 19	(d) -13
				··· 1 · / 1	
	II (a)	$F(X) = \sqrt{X^2} - \frac{1}{2}$	(b) 0 16 only	a critical point when $\mathbf{\hat{c}} = 0$ 8 16 only	$\mathbf{x} = \dots$
	G	0 Olly	——————————————————————————————————————		
0	If F	$F(x) = x - 2\sqrt{x}$	$\overline{\mathbf{x}}$ then $F(\mathbf{x})$ has a c	ritical point when $x =$	=
-	a	0 only	b 1 only	© 0, 1 only	d -1 , 1 only

3 sec[

مكتب ممتثار الرياضيات

Differential & integral Calculus

مكتب ممتخار الرياضيات

DERIVATIVE:

- (1) Find the first derivative of the function $y = x^2 \sec \frac{1}{x}$
- (2) Find the slope of tangent to the curve: $y = 2 \cot x \sqrt{2} \sec x$ at $x = \frac{\pi}{4}$
- (3) If $y = \cos 2\pi\theta$, $x = \sin 2\pi\theta$, then find $\frac{dy}{dx}$ at $\theta = \frac{1}{6}$
- (4) Find the value of the parameter t as which the curve, x = 2t³ 5t² + 4t + 9, y = 2t² + t 5
 (a) Has vertical tanget
 (b) Has horizontal tanget
- (5) Using the parametric differentiation find the first derivative of (x sin x) With respect to (1 cos x) at $x = \frac{\pi}{3}$

(6) If
$$y = \sqrt{2x + 5}$$
, then prove that $(2x + 5) \frac{d^3y}{dx^3} + 3 \frac{d^2y}{dx^2} = 0$.

- (7) If $y^2 + x^2y^2 = 8$, then prove that $(x^2 + 1)\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + y = 0$ (8) If $y^2 + ax^3 - bx = c$, then prove that $yy^{11} + (y^{1})^2 + 3ax = 0$
- (9) If $\sin 2x \cos 3x = 0$, then prove that: $3\frac{d^2y}{dx^2} \tan 3y + 9(\frac{dy}{dx})^2 - 4 = 0$.
- (10) If x y = 1, then prove that $\frac{d^2y}{dx^2} + 3y\frac{dy}{dx} + y^3 = 0$.

(11) If $y = x^3 + 1$, $z = x^2 + 1$, then find the value of $\frac{d^2z}{dy^2}$ at x = 2

3 sec

(12) If $x^2 = 2t - 3$, $y = 2t^2 - 1$, then prove that:
$3 \frac{dy}{dx} - x \frac{dy}{dx^2} - 12 x = 0$
(13) If $x = \sin 2t$, $y = \cos 2t = 0$, then find $\frac{d^2y}{dx^2}$ at $t = \frac{\pi}{2}$.
(14) If $y = \tan^2 y$, then prove that $\frac{d^2y}{d^2y} = 2(1 + y)(1 + 2y)$
(14) If $y = tail x$, then prove that $\frac{1}{dx^2} = 2(1 + y)(1 + 3y)$
(15) If $y = xe^x$, then prove that $x\frac{dy}{dx} = y(x+1)$
GEOMETRICAL APPLICATIONS

- (1) Find the equation of the tangent and the normal to the curve: $x^2 + y^2 6x 16 = 0$ at its intersection point with y axis, where y>0.
- (2) Find the equations of the tangent and the normal to the curve: $x = y \sec x$ at the point in which $x = \pi$.
- (3) If the parametric equations of the function curve y = f(x) are $x = \sec^2 \theta 1$, $y = \tan \theta$, then find the equation of the tangent and normal at $\theta = -\frac{\pi}{4}$
- (4) Prove that the two curves $y = x^2 x + 2$, $y = 3x x^2$ are tangential and find the equation of the common tangenht.
- (5) Find the points of the intersection of the two curves x y = 2, $x^2 y^2 = 3$, then prove that they are intersect orthogonally.
- (6) Find the values of constants a, b, c such that the two curves y = ax³ + b x , y = c x² x has a common tangent at the point (-1, 2)

- Find the area of the triangle bounded by x-axis, tangent and (7)
 - normal to the curve: $3x^2 + y^2 = 12$ at the point (-1, 3) which lies on the curve.
- (8) Find the points on the curve $2y^2 8y + x = 0$, at which the tangent is parallel to y - axis.
- (9) Find the points on the curve $y = x^3 x$ at which the tangent passes theough the point (1, -4).
- (10) Find the points on the y axis such that the two tangents drawen from it to the curve $4y + x^2 = 0$ with the straight line passes theough the points of tangency form an equilateral triangle.

RELATED TIME RATES:

- A spherical balloon is filled with gas but the gas leaks at the rate (1) of x cm³ / sec. Prove that the rate of the decrease of the balloon area at the moment which the radius length r cm equal $\frac{2x}{r}$ cm² / sec.
- A cube extends by heat so its edge length increases at a rate 0.02 cm (2) /min. and its surface area increases at $0.72 \text{ cm}^2 \setminus \text{min}$ at a moment. Find the cube edge length at of this moment and the rate of increase in its volume at this time.
- Ametal body in the form of cuboid with square base, its base side (3) increases at a rate of 1 cm /min and its height decreases at a rate2 cm /min. Find the rate of increasing of its volume when its base side length 5 cm and its height 20 cm, then find after how many minutes this Increase will be vanish.

(4) A metal regular quad pyramids whose height equals its base side length. Its volume increases at a rate of 1cm3/sec, if the rate of the increase of both the pyramid's height and its base side length equals 0.01 cm/sec find its base side length.

(5) ABC is a right- angled triangle at C, its area is constant and equals 24 cm^2 , if the rate of change of b equals 1 cm /sec. find the rate of change for each of a and m($\angle A$), at the moment in which b equals 8 cm.

- (6) A regular octagon whose side length is 10 cm and it increases at a rate of 0.2 cm / sec.Find the rate of increase of its area.
- (7) The point A(x, y) moves on the function curve $y = x^3 + x$ where $\frac{dy}{dt} = 2$ unit/ sec. Find the rate of change of the area of the triangle A B C where O is the origin and B (0, 6) at the moment at which the X-coordinate of the moving point equals 3.
- (8) A circular segmet in which the length of radius of its circle is 10 cm and its center angle measured x° and change at a rate of $3^{r} / min$). Find the rate of increase of its area at $x = 60^{\circ}$.
- (9) A 5-meter long ladder is leaning by its lower end on a vertical wall and its other end on a horizontal groud, if the lower end slides a way from the wall at a rate of $\frac{1}{2}$ m / min. Then find the rate of sliding the top of the ladder, when the lower end at 3 m from the wall. Then find the lower end distance from the wall when the two sides move at the same rate.
- (10) An isosceles triangle whose base length is 8 cm and its height changes at a rate of 2cm / min. Find the rate of change of the vertix angle when its height is 6 cm.

- (11) A 180 cm man standing in front of a lamp rising from the surface of the ground by 5.4 meters. If the man moves away from the lamp on a horizontal road at a fixed speed of 3 m / sec,then:
 - (a) The rate of change in the length of a man's shadow.
 - (b) The speed of the end of man's shadow.
 - © The rate of change of the man's head from the lamp when the man is 4.8 m from the lamppost.

(12) Water is poured into a cylindrical container at a rate of 2 cm³ / sec. Find the rate of change at the height of the water rises in the container.such that base radiuas length 2 cm. If the container height is 2.8 cm, when does the container become full. $(\pi = \frac{22}{7})$

BEHAVIOR OF THE FUNCTION

- (1) Determine the increasing and decreasing intervals of the function $f(\chi) = \sin x + \cos x$ where $x \in [0, \frac{3\pi}{2}]$.
- (2) Determine the increasing and decreasing intervals of the function $f(x) = x e^x$.
- (3) Determine the increasing and decreasing intervals of the function $f(x) = x + \ln x$.
- (4) Find the local maximum and minimumvalues (if existed), of the $f(x) = x^3 9x^2 + 24x + 10$ and show its type.
- (5) Find the local maximum and minimum values (if existed), of the $f(x) = \sqrt[3]{(x-1)^2} + 2$ and show its type.
- (6) Find the local maximum and minimumvalues (if existed), of the $f(x) = \frac{x^2}{1-x} + 2$ and show its type.

- (7) Find the local maximum and minimum values(if existed), of the $f(x) = \ln(e^{2x} 2e^x + 3)$ and show its type.
- (8) Find the local maximum and minimumvalues (if existed), of the $f(x) = e^{\frac{1}{x}} (\frac{1}{x} 2)$ and show its type.
- (9) Find the local maximum and minimum values (if existed), of the $f(x) = x^2 1 2 \ln|x|$ and show its type.
- (10) Determine the intervals of convexity upwards, downwards and The inflection points (if existed) of the function curve: $f(x) = x^3 + 2x^2 - 4x - 8$.
- (11) If the function f where $f(x) = x^3 + a x^2 + bx$ has an inflection point at (2, 2), then find the values of a , b.
- (12) Find the extrema values of the following functions on the given interval:
 (a) f(x) = 1 + 12x x³
 (b) (x) = x² e^x
 [-3,1]
- (13) Sketch the curve of the function $f(x) = 2 + 3x x^3$

APPLICATIONS OF MAXIMUMA AND MINIMUMA

- (1) A right- angled triangle whose hypotenuse length is 26 cm. Find the length of the two legs of the right angle, if the length of the altitude from the right angle on the hypotenuse is as maximum as possible.
- (2) If the straight line L intersect the coordinates axes at the points A, B and passes throw the point C = (8, 1). Find the smallest length of piece \overline{AB} .

- (3) Determine the largest area of a rectangular region drawn in a Δ ABC with two sides applied to the coordinate axes where A = (3, 0), B = (0, 4), and O = (0, 0).
- (4) \overline{AB} is a diameter in a circle M, $E \in$ the circle . From E the tangent is drawn to the circle and intersect the two tangent are drawn to the circle from A,B at C,D respectively.Prove that the minimum area of the trapezium ABCD equals double square length diameter of the circle.
- (5) Find the dimensions of the largest rectangle can be drawn in the isosceles triangle, the length of its base 18 cm, the height 12 cm such that two vertices lie on the triangle base and the other two vertices on each side of the triangle.
- (6) A rectangular Parallelpiped has a volume 576 cm³ and the ratio between the two lengths of its base iis 2 : 1 .Find the dimensions of the parallelppiped that makes its total surface area minimum.

INTEGRATION:

FIRST: Find each of the following:

0	$\int (1 + \tan^2 x) \cos^2 x dx$	0	$\int x^3 \sqrt{4 - x^2} dx$
2	$\int \frac{dx}{\sqrt{x}\left(1+\sqrt{x}\right)^3}$	Ð	$\int (3+\sin x)^5 \cos x dx$
ø	$\int (x^2 + 5)\sqrt{x - 1} dx$	₿	$\int \frac{\sec^2(\ln x)}{x} dx$
4	$\int x e^{-2x} dx$	4	$\int x^2 \sqrt[3]{3x+1} dx$
6	$\int \frac{\ln x}{\sqrt{x}} dx$	₿	$\int \ln(x+1)dx$

Differential & integral Calculus

6	$\int x \sin x dx$	❻	$\int x^3 \ln x dx$
Ø	$\int \frac{4x}{\sqrt[3]{2x+1}} dx$	Ð	$\int x \sec^2 x dx$
8	$\int e^{\sqrt{x}} dx$	13	$\int \frac{3x+5}{e^{2x}} dx$
Ø	$\int \frac{\ln x}{x^2} dx$	19	$\int \frac{xe^x}{(x+1)^2} dx$
0	$I = \int x(\ln x)^2 dx$	20	$\int_{-3}^{3} x^2 - 4 x dx$

SECOND: <u>application of integration</u>:

- (1) If $\int_{3}^{a-1} f(x) dx = \int_{2}^{3} 2f(2x-1) dx$. Then find the value of a.
- (2) Find the equation of the curve passing through the point $(\frac{\pi}{2}, \frac{\pi^2}{4} + 9)$ if its slope of tangent at any point is (x, y) on it given in relation $m = 2x + \frac{1}{2}sec^2\frac{x}{2}$
- (3) Find the equation of the curve passing through the two points $(\frac{\pi}{4}, 5)(\frac{3\pi}{4}, 1)$ if its slope of tangent at any point is (x, y) on it given in relation $m = -a \csc^2 x$, a constant.

(4) If the slope of the normal to a curve at any point on it (x, y) is given by relation $m = \csc x \sec x$, find the equation of the curve, note that it passes through the point $(\frac{\pi}{6}, 1)$

- (5) The slope of the tangent to a curve at any point (x, y) on it is given by the relation $\frac{dy}{dx} = \frac{3}{y+\sqrt{y}}$, find the equation of the curve, note that it passes through the point $(\frac{1}{18}, 1)$.
- (6) If the function curve y = f(x) has a local maximum value at the point (2, 7) and $\frac{d^2y}{dx^2} = 2 6x$ find the equation of the curve.

(7) If $y \frac{dy}{dx} + 2x = 3$ and the curve passes through the point (1, 2). Then find the relationship between x, y.

- (8) If the rate of change of the slope of the tangent to a curve at any point on it is 6x 3. find the equation of the curve, note that it passes through the point (2, 2) and the tangent at x = 1 is horizontal.
- (9) If the slope of the tangent to a curve at any point is given by the relation $\frac{dy}{dx} = 3x^2 18x + 24$ and the curve has a local minimum value equal 26. Find the local value maximum of the function.
- (10) Find the area of the region bounded by the function curve $f(x) = x^3$, the x axis and the two straight lines x = -2, x = 2.
- (11) If $f:] \infty, 3] \rightarrow \mathbb{R}$ where $f(x) = x^3 4x$. find the area of the region above x axis bounded by the function curve and x axis.

Differential & integral Calculus

3 sec

- (12) Find the area of the region bounded by the function curve $f(x) = 3 + 2x x^2$ and the straight lines x = -1, x = 4 and y = 0.
- (13) Find the area of the region bounded by the two curves $f(x) = x^3 3x^2 + 5$, (x) = x + 2.

- (14) If the cost of a squared metre of granite to cover the floor of a hotel corridors is L.E.400 and five corridors have been already covered with granite and the area of each is bounded by the curve of the function f and the two straight lines x = 0, y = 0, where $f(x) = 12 \frac{1}{3}x^2$ find the cost covering the five corridors.
- (15) Find the volume of the solid generated by revolving the region bounded by the two curves $y = \sqrt{x}$, $y = x^2$ a complete revolution about x axis.

(16) Find the volume of the solid generated by revolving the region bounded by the two curves $y = 4 - x^2$, 2x + y = 4 a complete revolution about y - axis.

(17) Find the volume of the solid generated by revolving the region bounded by the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and x - axis where a and b are connstannts a complete revolution about x-axis

Answers of Choose

De	ivatives	•							
(1)	с	(2)	c	(3)	d	(4)	с	(5)	b
(6)	b	(7)	b	(8)	b	(9)	b	(10)	d
(11)	a	(12)	c	(13)	d	(14)	b	(15)	a
(16)	a	(17)	b	(18)	c	(19)	a	(20)	a
Lir	nits:								
(1)	a	(2)	c	(3)	b	(4)	d	(5)	b
(6)	c	(7)	d	(8)	d			5	
Ge	ometric	al a	pplecat	ions	S:				
(1)	b	(2)	c	(3)	b	(4)	b	(5)	b
(6)	a	(7)	d	(8)	b	(9)	d	(10)	С
Re	lated tin	n ra	tes:						
(1)	a	(2)	a	(3)	c	(4)	b	(5)	d
(6)	c	(7)	a	(8)	b	(9)	a		
Be	havior o	of th	e Funct	tion					
(1)	a	(2)	a	(3)	b	(4)	b	(5)	b
(6)	с	(7)	d	(8)	d	(9)	a	(10)	b
(11)	с	(12)	b	(13)	c	(14)	c	(15)	d
Int	egratior) : (fi	rst)						
(1)	a	(2)	c	(3)	d	(4)	b	(5)	b
(6)	b	(7)	c	(8)	c	(9)	b	(10)	d
(11)	d N	(12)	b	(13)	b	(14)	b	(15)	С
(16)	d 🔨	(17)	a	(18)	c	(19)	b	(20)	С
Int	Integration: (second)								
(1)	d	(2)	d	(3)	a	(4)	b	(5)	c
(6)	c	(7)	d	(8)	d	(9)	С	(10)	a

Producing answers questions

Deivatives :		
(1)	(2) -2	

Differential & integral Calculus

(3) $-\sqrt{3}$ (4) $t = \frac{2}{3}, t = 1, t = \frac{-1}{4}$ (5) $\sqrt{3}$ (6)prove(7)prove(8)prove(9)prove(10)prove(11) -1 (12)prove(13)1(14)prove(15)prove(11) -1 (12)prove(12)prove(13)1(14)prove(14)equation of the tangent is $y = 8$ (2)equation of the normal is $x + y = 0$ (15)prove(2)equation of the tangent is $y + x = 0$ (3)equation of the normal is $x + y = 2 = 0$ (4)equation of the normal is $x - y - 2 = 0$ (4)equation of the normal is $x - y - 2 = 0$ (4)equation of the normal is $x - y - 2 = 0$ (5)prove(6) $a = \frac{-1}{2}, b = \frac{-3}{2}$ and $c = 1$ (7)The area = 9 square unit(8)(9)The points are $(3, 6), (-1, 2)$ (10)(9)The points are $(3, 6), (-1, 2)$ (10)(1) -4 cm ² /sec(2) 0.54 cm ³ /min(3)150 cm ³ /min , 3 min.(4)10 cm(5) $\frac{3}{4}, \frac{3}{25}$ (6) 19.3 (7) $\frac{3}{18}, 2.5\sqrt{2}$ (10) $\frac{3}{4}, \frac{5\pi}{4}$ (11) $1.5, 4.5, 2.2.4$ (12) $\frac{3\pi}{4}, \frac{5\pi}{4}$ (2) -3 the function is increasing $\forall x \in [0, \infty]$ and decreasig $\forall x \in [\frac{\pi}{4}, \frac{5\pi}{4}$ (11)1.5, 4.5, 2.2.4(12)1The function is increasing on it							
(5) $\sqrt{3}$ 3(6)prove(7)prove(8)prove(9)prove(10)prove(11) -1 72 (12)prove(13)1(14)prove(15)prove(16)prove(16)equation of the tangent is $y = 8$ equation of the normal is $x = 0$ equation of the normal is $x - y = 1$ equation of the normal is $x - y = 2\pi = 1$ (3)equation of the tangent is $y + x = 0$ equation of the normal is $x - y - 2\pi = 1$ equation of the normal is $x - y - 2\pi = 1$ (3)equation of the normal is $x - y - 2\pi = 1$ equation of the normal is $x - y - 2\pi = 1$ (4)(5)prove(6) $a = -\frac{1}{2}, b = -\frac{3}{2}$ and $c = 1$ (7)(7)The area = 9 square unit (8)The point is (8, 2)(9)The points are $(3, 6), (-1, 2)$ (10)(10)The point is $(0, 2)$ Related tim rates: (1)(1)-4 cm ² /sec(2)(2)0.54 cm ³ /min(3)150 cm ³ /min , 3 min.(4)10 cm(5) $\frac{a}{4}, \frac{-3}{23}$ (6)19.3(7) $\frac{1}{28}$ (8)75 cm ² /min(9) $\frac{a}{3}, 2.5\sqrt{2}$ (10) $\frac{1}{13}, \frac{5\pi}{4}$ (11)1.5, 4.5, 2.4 BEHAYIOR OF THE FUNCTIONBEHAYIOR OF THE FUNCTION 1The function is increasing $\forall x \in]0, \pi \begin{bmatrix} 1\\ 0, \frac{\pi}{4}, \frac{\pi}{4$		(3)	$-\sqrt{3}$	(4)	$t = \frac{2}{3}$, $t = 1$, $t = \frac{-1}{4}$		
$\overline{3}$ $\overline{3}$ (7) prove(8) prove(9) prove(10) prove(11) -1 (12) prove(13) 1(14) prove(15) prove $\overline{2}$ (16) equation of the tangent is $y = 8$ (1) equation of the tangent is $y = 8$ (2) equation of the tangent is $y + x = 0$ (3) equation of the tangent is $y + x = 0$ (4) equation of the tangent is $x - y + 1$ (5) prove(6) $x = -\frac{1}{2}, b = -\frac{3}{2}$ and $c = 1$ (7) The area = 9 square unit(8) The point is $(8, 2)$ (9) The points are $(3, 6), (-1, 2)$ (10) The point is $(0, 2)$ Related tim rates: (1) -4 cm ² /sec(2) 0.54 cm ³ /min(3) 150 cm ³ /min , 3 min.(4) 10 cm(5) $\frac{1}{3}, -\frac{3}{2}$ (7) $\frac{1}{38}$ (8) 75 cm ² /min(9) $\frac{1}{3}, 2.5\sqrt{2}$ (10) $\frac{1}{3}$ (11) $1.5, 4.5, 2.4$ (12) $\frac{74}{4}, 17.6$ BEHAVIOR OF THE HUNCTION 11111112144444444571111111111111111		(5)	$\sqrt{3}$	(6)	prove		
(7)prove(8)prove(9)prove(10)prove(11) $-\frac{1}{72}$ (12)prove(13)1(14)prove(15)prove			3				
(9)prove(10)prove(11) $-\frac{1}{72}$ (12)prove(13)1(14)prove(15)prove9(16)equation of the tangent is y = 8 equation of the normal is x = 0(2)equation of the tangent is y + x = 0(3)equation of the normal is x + 2 = 0(4)equation of the normal is x - y - 2 = 0(5)prove(6) $a = \frac{-1}{2}, b = \frac{-3}{2}$ and $c = 1$ (7)The area = 9 square unit(8)The point is (8, 2)(9)The points are (3, 6), (-1, 2)(10)The point is (0, 2)Related tim rates:(1)-4 cm ² /sec(2)0.54 cm ³ /min(3)150 cm ³ /min, 3 min.(4)10 cm(5) $\frac{3}{4}, \frac{3}{25}$ (10) $\frac{1}{13}$ (7) $\frac{3}{28}$ (8)75 cm ² /min(9) $\frac{3}{8}, 2.5\sqrt{2}$ (10) $\frac{1}{14}, \frac{5\pi}{4}$ (11)1.5, 4.5, 2.4(12) $\frac{7}{4}, \frac{5\pi}{4}$ Detention is increasing $\forall x \in]0, \frac{\pi}{4} [u] \frac{3\pi}{4}, \frac{5\pi}{4} [$ and decreasig $\forall x \in]\frac{\pi}{4}, \frac{5\pi}{4} [$ The function is increasing $\forall x \in]0, m[$ and decreasig $\forall x \in]-\infty, 0[$ The function is increasing $\forall x \in]0, m[$ and decreasig $\forall x \in]-\infty, 0[$ The function is increasing $\forall x \in]0, m[$ and decreasig $\forall x \in]-\infty, 0[$ The function is increasing $\forall x \in]0, m[$ and decreasig $\forall x \in]-\infty, 0[$ The function is increasing $\forall x \in]0, m[$ and $(2, 30)$ is a maximum point.At $x = 2$ there is a loca		(7)	prove	(8)	prove		
$ \begin{array}{ c c c c c } \hline (12) & \text{prove} \\ \hline (13) & 1 & (14) & \text{prove} \\ \hline (13) & 1 & (14) & \text{prove} \\ \hline (15) & \text{prove} & & & \\ \hline (16) & \text{qcuation of the tangent is y = 8} & (2) & \text{equation of the tangent is y + x = 0} \\ \hline (16) & \text{equation of the normal is x = 0} & (2) & \text{equation of the tangent is y + x = 0} \\ \hline (16) & \text{equation of the normal is x + y = 2} & (4) & \text{equation of the tangent is x - y = 2} \\ \hline (3) & \text{equation of the normal is x + y = 2} & (4) & \text{equation of the tangent is x - y = 1} \\ \hline (5) & \text{prove} & (6) & & a = \frac{-1}{2}, b = \frac{-3}{2} & and c = 1 \\ \hline (7) & \text{The area = 9 square unit} & \hline (8) & \text{The point is (8, 2)} \\ \hline (9) & \text{The points are (3, 6), (-1, 2)} & \hline (10) & \text{The point is (0, 2)} \\ \hline \textbf{Related tim rates:} & \hline (1) & -4 & \text{cm}^2/\text{sec} & \hline (2) & 0.54 & \text{cm}^3/\text{min} \\ \hline (3) & 150 & \text{cm}^3/\text{min}, 3 & \text{min} & \hline (4) & 10 & \text{cm} \\ \hline (5) & \frac{-3}{4}, \frac{-3}{25} & \hline (6) & 19.3 \\ \hline (7) & \frac{3}{28} & \hline (8) & 75 & \text{cm}^2/\text{min} \\ \hline (9) & \frac{-3}{8}, 2.5\sqrt{2} & \hline (10) & \frac{1}{15} \\ \hline (11) & 1.5, 4.5, 2.4 & \hline (12) & \frac{3\pi}{4}, \frac{5\pi}{4} \\ \hline \textbf{and decreasig } \forall x \in] \frac{\pi}{4}, \frac{5\pi}{4} \\ \hline \textbf{2} & \text{The function is increasing } \forall x \in] 0, \frac{\pi}{4} [\cup] \frac{3\pi}{4}, \frac{5\pi}{4} \\ \hline \textbf{3} & \text{The function is increasing } \forall x \in] 0, \frac{\pi}{4} [\cup] \frac{3\pi}{4}, \frac{5\pi}{4} \\ \hline \textbf{3} & \text{The function is increasing } \forall x \in] 0, \frac{\pi}{4} [u] \frac{3\pi}{4}, \frac{5\pi}{4} \\ \hline \textbf{3} & \text{The function is increasing } \forall x \in] 0, \frac{\pi}{4} [u] \frac{3\pi}{4}, \frac{5\pi}{4} \\ \hline \textbf{3} & \text{The function is increasing } \forall x \in] 0, \frac{\pi}{4} [u] \frac{3\pi}{4}, \frac{5\pi}{4} \\ \hline \textbf{3} & \text{The function is increasing } \forall x \in] 0, \frac{\pi}{4} [u] \frac{3\pi}{4}, \frac{5\pi}{4} \\ \hline \textbf{3} & \text{the rotion is increasing } \forall x \in] 0, \infty [\text{ and decreasig } \forall x \in] -\infty, 0 \\ \hline \textbf{3} & \text{The function is increasing } \forall x \in] 0, \infty [\text{ and maximum value = 30, and (2, 30) is a maximum point.} \\ \hline \textbf{4} & \textbf{4} x = 2 \text{ there is a local minimum value = 30, and (2, 30) is a maximum point.} \\ \hline \textbf{5} & \textbf{4} x = 1 \text{ there is a local minimum value = 2, and (0, 0, 0, 9) is a minimum point.} \\ \hline \textbf{5} $		(9)	prove	(10)	prove		
$\frac{72}{(13) 1}$ $\frac{72}{(15) \text{ prove}}$ $\frac{72}{(16) \text{ equation of the tangent is y = 8}{(2) \text{ equation of the normal is x - y - 2\pi = 1}}$ $\frac{7}{(3) \text{ equation of the normal is x + y - 2} = 0}$ $\frac{7}{(3) \text{ equation of the normal is y + x = 0}{(4) \text{ equation of the tangent is y - y - 2\pi = 1}}$ $\frac{7}{(3) \text{ equation of the normal is x - y - 2\pi = 0}}$ $\frac{7}{(3) \text{ equation of the normal is x - y - 2\pi = 0}$ $\frac{7}{(4) \text{ equation of the normal is x - y - 2\pi = 0}$ $\frac{7}{(5) \text{ prove}}$ $\frac{7}{(6) \text{ prove}}$ $\frac{7}{(10) \text{ The point is (8, 2)}}$ $\frac{7}{(7) \frac{3}{28}}$ $\frac{7}{(6) \frac{3}{150 \text{ cm}^3/\text{min}}, 3 \text{ min.}$ $\frac{7}{(7) \frac{3}{28}}$ $\frac{7}{(7) \frac{3}{28}}$ $\frac{7}{(8) 75 \text{ cm}^3/\text{min}}$ $\frac{7}{(7) \frac{3}{28}}$ $\frac{7}{(7$		(11)	<u>-1</u>	(12)	prove		
(13) 1(14) prove(13) prove(14) equation of the tangent is y = 8 equation of the normal is x = 0(2) equation of the tangent is y + x = 0 equation of the normal is x - y - 2 = 0(3) equation of the tangent is y + x = 0 equation of the normal is x - y - 2 = 0(4) equation of the tangent is x - y + 1(5) prove(6) $a = -\frac{1}{2}, b = -\frac{3}{2}$ and $c = 1$ (7) The area = 9 square unit(8) The point is (8, 2)(9) The points are (3, 6), (-1, 2)(10) The point is (0, 2)Related tim rates:(1) -4 cm ² /scc(2) 0.54 cm ³ /min(3) 150 cm ³ /min, 3 min.(4) 100 cm(5) $= \frac{3}{4}, \frac{3}{25}$ (6) 19.3(7) $\frac{3}{28}$ (8) 75 cm ² /min(9) $= \frac{3}{8}, 2.5\sqrt{2}$ (10) $= \frac{3}{8}, 2.5\sqrt{2}$ (10) $= \frac{3}{8}, 2.5\sqrt{2}$ (10) $= \frac{3}{8}, 2.5\sqrt{2}$ (11) 1.5, 4.5, 2.4Ite function is increasing $\forall x \in [0, \sqrt{n}] \left[12, \frac{3\pi}{4}, \frac{5\pi}{4} \right]$ The function is increasing $\forall x \in [0, \infty]$ and decreasig $\forall x \in]-\infty, 0[$ The function is increasing $\forall x \in [0, \infty]$ and decreasig $\forall x \in]-\infty, 0[$ The function is increasing $\forall x \in [0, \infty]$ and decreasig $\forall x \in]-\infty, 0[$ The function is increasing $\forall x \in [0, \infty]$ and decreasig $\forall x \in]-\infty, 0[$ <		(12)	1				
(15) prove Geometrical applecations: (1) equation of the tangent is y = 8 equation of the tangent is y + x = 0 equation of the tangent is y + x = 0 equation of the tangent is y + x = 0 equation of the tangent is x + y = 2 = 0 (3) equation of the tangent is y + x = 0 equation of the tangent is x - y - 2 = 0 (4) equation of the tangent is x - y - 2 = 0 (5) prove (6) $a = \frac{-1}{2}, b = \frac{-3}{2} and c = 1$ (7) The area = 9 square unit (8) The point is (8, 2) (9) The points are (3, 6), (-1, 2) (10) The point is (0, 2) Related tim rates: (1) -4 cm ² /sec (2) 0.54 cm ³ /min (3) 150 cm ³ /min , 3 min. (4) 10 cm (5) $\frac{-4}{3}, \frac{-3}{23}$ (6) 19.3 (7) $\frac{4}{28}$ (8) 75 cm ² /min (9) $\frac{-3}{8}, 2.5\sqrt{2}$ (10) $\frac{-4}{13}$ (11) 1.5 , 4.5 , 2.4 EXEAVIOR OF THE FUNCTION 1 The function is increasing $\forall x \in]0, \frac{\pi}{4} \cup]\frac{3\pi}{4}, \frac{5\pi}{4} [$ and decreasig $\forall x \in]\frac{\pi}{4}, \frac{5\pi}{4} [$ 2 The function is increasing $\forall x \in]0, \infty$ and decreasig $\forall x \in]-\infty, 0[$ 3 The function is increasing $\forall x \in]0, \infty$ and decreasig $\forall x \in]-\infty, 0[$ 3 The function is increasing $\forall x \in]0, \infty$ and decreasig $\forall x \in]-\infty, 0[$ 3 The function is increasing on its domaiin. 4 At x = 2 there is a local maximum value = 30, and(2, 30) is a maximum point. 4 At x = 1 there is a local minimum value = 2, and(1, 2) is a minimum point. 5 At x = 1 there is a local minimum value = 2, and(0, 2, 1) is a minimum point. 7 At x = 0 there is a local minimum value = -c, and(1, -e) is a minimum point. 8 At x = 1 there is a local minimum value = -c, and(1, -e) is a minimum point.		(13)	1	(14)	prove		
Geometrical applecations:(1)equation of the tangent is y = 8 equation of the tangent is x = 0 equation of the tangent is x = 0 equation of the tangent is x + x = 0 equation of the tangent is x + y = 0 equation of the tangent is x + y = 0 equation of the tangent is x + y = 0 equation of the tangent is x + y = 0 equation of the tangent is x + y = 0 equation of the tangent is x + y = 0 equation of the tangent is x + y = 0 equation of the tangent is x - y = 2 = 0(4) equation of the tangent is x - y = 2 = 0 equation of the tangent is x - y = 2 = 0 (5) prove (6) $a = -\frac{1}{2}, b = -\frac{3}{2} and c = 1$ (7) The area = 9 square unit (8) The point is (8, 2) (9) The points are (3, 6), (-1, 2) (10) The point is (0, 2)The point is (8, 2) (9) The points are (3, 6), (-1, 2) (10) The point is (0, 2)Related tim rates: (1) (1) (1) (1) (3) (4) (1) (5) $=\frac{3}{4}, -\frac{3}{2}$ (6) (6) (6) (1) (3) (4) (10) $=\frac{3}{4}, -\frac{3}{2}$ (6) (6) (10) (10) $=\frac{3}{4}, -\frac{3}{2}, $		(15)	prove				
(1) equation of the tangent is $y = 8$ equation of the tangent is $y = 8$ equation of the tangent is $y + x = 0$ equation of the tangent is $x - y - 2\pi = 1$ (3) equation of the tangent is $x - y - 2\pi = 1$ (4) equation of the tangent is $x - y - 2\pi = 1$ (5) prove (6) $a = \frac{-1}{2}, b = \frac{-3}{2}$ and $c = 1$ (7) The area = 9 square unit (8) The point is $(8, 2)$ (9) The points are $(3, 6), (-1, 2)$ (10) The point is $(0, 2)$ Related tim rates: (1) $-4 \text{ cm}^2/\text{sec}$ (2) $0.54 \text{ cm}^3/\text{min}$ (3) $150 \text{ cm}^3/\text{min}$, 3 min. (4) 10 cm (5) $\frac{-3}{4}, \frac{-3}{25}$ (6) 19.3 (7) $\frac{1}{28}$ (8) $75 \text{ cm}^2/\text{min}$ (9) $\frac{-3}{8}, 2.5\sqrt{2}$ (10) $\frac{-1}{13}$ (11) $1.5, 4.5, 2.4$ (12) $\frac{7}{4}, 17.6$ BEHAVIOR OF THE FUNCTION 1 The function is increasing $\forall x \in]0, \infty[$ and decreasig $\forall x \in]\frac{\pi}{4}, \frac{5\pi}{4}[$ 2 The function is increasing $\forall x \in]0, \infty[$ and decreasig $\forall x \in]-\infty, 0[$ 3 The function is increasing $\forall x \in]0, \infty[$ and decreasig $\forall x \in]-\infty, 0[$ 3 The function is increasing on its domaitin. 4 At $x = 2$ there is a local maximum value = 20, and(2, 30) is a maximum point. 5 At $x = 1$ there is a local minimum value = 2, and(0, -2) is a minimum point. 6 At $x = 0$ there is a local minimum value = 2, and(0, -2) is a minimum point. 7 At $x = 0$ there is a local minimum value = 2, and(0, 0.69) is a minimum point. 8 At $x = 1$ there is a local minimum value = 0.69, and(0, 0.69) is a minimum point. 8 At $x = 1$ there is a local minimum value = 0.69, and(0, 0.69) is a minimum point. 7 At $x = 0$ there is a local minimum value = 0.69, and(0, 0.69) is a minimum point.		Ge	ometrical applecations:	1			
(3)equation of the tanngent is $y + x = 0$ equation of the normal is $x - y - 2 = 0$ (4)equation of the tanngent is $x - y + 1$ equation of the normal is $x - y - 2 = 0$ (5)prove(6) $a = \frac{-1}{2}, b = \frac{-3}{2}$ and $c = 1$ (7)The area = 9 square unit(8)The point is $(8, 2)$ (9)The points are $(3, 6), (-1, 2)$ (10)The point is $(0, 2)$ Related tim rates: (1)-4 cm ² /sec(2) $0.54 \text{ cm}^3/\text{min}$ (3)150 cm ³ /min , 3 min.(4)10 cm(5) $\frac{-3}{4}, \frac{-3}{25}$ (6)19.3(7) $\frac{3}{28}$ (8)75 cm ² /min(9) $\frac{-3}{8}, 2.5\sqrt{2}$ (10) $\frac{1}{14}$ (11)1.5 , 4.5 , 2.4(12) $\frac{7}{4}, 17.6$ BEHAVIOR OF THE FUNCTION 1The function is increasing $\forall x \in]0, \#[\cup] 3\pi]/4, 5\pi[$ and decreasig $\forall x \in]\frac{\pi}{4}, 5\pi[$ 2The function is increasing $\forall x \in]0, \varpi[$ and decreasig $\forall x \in]-\infty, 0[$ 3The function is increasing on its domaiin.4At $x = 2$ there is a local maximum value = 30, and(2, 30) is a maximum point.5At $x = 1$ there is a local minimum value = 2, and(1, 2) is a minimum point.6At $x = 2$ there is a local minimum value = 2, and(0, 2, -2) is a maximum point.7At $x = 0$ there is a local minimum value = -2, and(0, 0.69) is a minimum point.8At $x = 1$ there is a local minimum value = -2, and(0, 0.69) is a minimum point.		(1)	equation of the tanngent is y = 8 equation of the normal is x = o	(2)	equation of the tanngent is $y + x = 0$ equation of the normal is $x - y - 2\pi = 0$		
(5) prove (6) $a = \frac{-1}{2}, b = \frac{-3}{2} and c = 1$ (7) The area = 9 square unit (8) The point is (8, 2) (9) The points are (3, 6), (-1, 2) (10) The point is (0, 2) Related tim rates: (1) -4 cm ² /sec (2) 0.54 cm ³ /min (3) 150 cm ³ /min, 3 min. (4) 10 cm (5) $\frac{-3}{4}, \frac{-3}{25}$ (6) 19.3 (7) $\frac{3}{28}$ (8) 75 cm ² /min (9) $\frac{-3}{8}, 2.5\sqrt{2}$ (10) $\frac{-4}{13}$ (11) 1.5, 4.5, 2.4 (12) $\frac{7}{4}, 17.6$ BEHAVIOR OF THE FUNCTION 1 The function is increasing $\forall x \in]0, \frac{\pi}{4}[\cup]\frac{3\pi}{4}, \frac{5\pi}{4}[$ and decreasig $\forall x \in]\frac{\pi}{4}, \frac{5\pi}{4}[$ 2 The function is increasing $\forall x \in]0, \frac{\pi}{4}[\cup]\frac{3\pi}{4}, \frac{5\pi}{4}[$ and decreasig $\forall x \in]\frac{\pi}{4}, \frac{5\pi}{4}[$ 2 The function is increasing $\forall x \in]0, \infty[$ and decreasig $\forall x \in]-\infty, 0[$ 3 The function is increasing on its domaiin. 4 At x = 2 there is a local maximum value = 30, and(2, 30) is a maximum point. 5 At x = 1 there is a local minimum value = -2, and(1, 2) is a minimum point. 6 At x = 0 there is a local minimum value = -2, and(0, 2) is a minimum point. 7 At x = 0 there is a local minimum value = -c, and(1, -e) is a minimum point. 8 At x = 1 there is a local minimum value = -c, and(1, -e) is a minimum point.		(3)	equation of the tanngent is $y + x = 0$ equation of the normal is $x - y - 2 = 0$	(4)	equation of the tanngent is $x - y + 1 = 0$		
(7)The area = 9 square unit(8)The point is (8, 2)(9)The points are (3, 6), (-1, 2)(10)The point is (0, 2) Related tim rates: (1)-4 cm²/sec(2)0.54 cm³/min(3)150 cm³/min , 3 min.(4)10 cm(5) $=3 + 3 + 25$ (6)19.3(7) $3x$ (8)75 cm²/min(9) $=3 + 25\sqrt{2}$ (10) $=1 + 32\sqrt{2}$ (11)1.5 , 4.5 , 2.4(12) $=2 + 32\sqrt{2}/2$ BEHAVIOR OF THE FUNCTION 1The function is increasing $\forall x \in]0, a_4^{\pi}[\cup] \frac{3\pi}{4}, \frac{5\pi}{4}[$ and decreasig $\forall x \in]\frac{\pi}{4}, \frac{5\pi}{4}[$ 2The function is increasing $\forall x \in]0, a_4[\cup] \frac{3\pi}{4}, \frac{5\pi}{4}[$ and decreasig $\forall x \in]-\infty, 0[$ The function is increasing $\forall x \in]0, a_4[\cup] \frac{3\pi}{4}, \frac{5\pi}{4}[$ and decreasig $\forall x \in]-\infty, 0[$ The function is increasing $\forall x \in]0, a_4[\cup] \frac{3\pi}{4}, \frac{5\pi}{4}[$ and decreasig $\forall x \in]-\infty, 0[$ The function is increasing $\forall x \in]0, a_4[\cup] \frac{3\pi}{4}, \frac{5\pi}{4}[$ and decreasig $\forall x \in]-\infty, 0[$ The function is increasing on its domaiin.4At $x = 2$ there is a local maximum value = 30, and (2, 30) is a maximum point.5At $x = 1$ there is a local minimum value = 2, and (1, 2) is a minimum point.6At $x = 2$ there is a local minimum value = -2, and (2, -2) is a maximum point.7At $x = 0$ there is a local minimum value = 2, and (0, 2, 2) is a minimum point.8At $x = 1$ there is a local minimum value = -e, and (1, -e) is a minimum		(5)	prove	(6)	$a = \frac{-1}{2}, b = \frac{-3}{2}$ and $c = 1$		
(9)The points are $(3, 6), (-1, 2)$ (10)The point is $(0, 2)$ Related tim rates:(1)-4 cm²/sec(2) $0.54 \text{ cm}^3/\text{min}$ (3)150 cm³/min , 3 min.(4)10 cm(5) $\frac{3}{4}, \frac{3}{25}$ (6)19.3(7) $\frac{3}{28}$ (8)75 cm²/min(9) $\frac{3}{8}, 2.5\sqrt{2}$ (10) $\frac{4}{13}$ (11) $1.5, 4.5, 2.4$ (12) $\frac{7}{4}, 17.6$ BEHAVIOR OF THE FUNCTION1The function is increasing $\forall x \in]0, \frac{\pi}{4} \cup]\frac{3\pi}{4}, \frac{5\pi}{4} [$ and decreasig $\forall x \in]\frac{\pi}{4}, \frac{5\pi}{4} [$ 2The function is increasing $\forall x \in]0, \infty[$ and decreasig $\forall x \in]-\infty, 0[$ 3The function is increasing on its domaiin.4At x = 2 there is a local maximum value = 30, and (2, 30) is a maximum point.5At x = 1 there is a local minimum value = 2, and (1, 2) is a minimum point.6At x = 2 there is a local minimum value = -2, and (0, 2) is a minimum point.7At x = 0 there is a local minimum value = -2, and (0, 2) is a minimum point.8At x = 1 there is a local minimum value = -e, and (1, -e) is a minimum point.		(7)	The area = 9 square unit	(8)	The point is (8, 2)		
Related tim rates:(1)-4 cm²/sec(2) $0.54 \text{ cm}^3/\text{min}$ (3)150 cm³/min , 3 min.(4)10 cm(5) $\frac{3}{4}$, $\frac{3}{25}$ (6)19.3(7) $\frac{3}{28}$ (8)75 cm²/min(9) $\frac{3}{8}$, $2.5\sqrt{2}$ (10) $\frac{4}{13}$ (11)1.5 , 4.5 , 2.4(12) $\frac{7}{4}$, 17.6BEHAVIOR OF THE FUNCTION1The function is increasing $\forall x \in]0$, $\frac{\pi}{4} [\cup]\frac{3\pi}{4}$, $\frac{5\pi}{4} [$ and decreasig $\forall x \in]\frac{\pi}{4}$, $\frac{5\pi}{4} [$ 2The function is increasing $\forall x \in]0$, $\infty [$ and decreasig $\forall x \in]-\infty$, $0[$ 3The function is increasing on its domaiin.4At $x = 2$ there is a local maximum value = 30, and (2, 30) is a maximum point.5At $x = 1$ there is a local minimum value = 2, and(1, 2) is a minimum point.6At $x = 2$ there is a local minimum value = -2, and(2, -2) is a maximum point.7At $x = 0$ there is a local minimum value = 2, and(0, 0.69) is a minimum point.7At $x = 0$ there is a local minimum value = -2, and(0, 0.69) is a minimum point.8At $x = 1$ there is a local minimum value = -e, and(1, -e) is a minimum point.		(9)	The points are $(3, 6), (-1, 2)$	(10)	The point is (0, 2)		
(1)-4 cm²/sec(2) $0.54 \text{ cm}^3/\text{min}$ (3)150 cm³/min , 3 min.(4)10 cm(5) $\frac{-3}{4}$, $\frac{-3}{25}$ (6)19.3(7) $\frac{3}{28}$ (8)75 cm²/min(9) $\frac{-3}{8}$, $2.5\sqrt{2}$ (10) $\frac{-4}{13}$ (11)1.5 , 4.5 , 2.4(12) $\frac{7}{44}$, 17.6BEHAVIOR OF THE FUNCTION1The function is increasing $\forall x \in]0$, $\frac{\pi}{4} [\cup] \frac{3\pi}{4}$, $\frac{5\pi}{4} [$ and decreasig $\forall x \in]\frac{\pi}{4}$, $\frac{5\pi}{4} [$ 2The function is increasing $\forall x \in]0$, $\infty [$ and decreasig $\forall x \in]-\infty$, $0[$ 3The function is increasing $\forall x \in]0$, $\infty [$ and decreasig $\forall x \in]-\infty$, $0[$ 4At $x = 2$ there is a local maximum value = 30, and $(2, 30)$ is a maximum point.4At $x = 2$ there is a local minimum value = 26, and $(4, 26)$ is a minimum point.5At $x = 1$ there is a local minimum value = -2, and $(2, -2)$ is a minimum point.6At $x = 2$ there is a local minimum value = -2, and $(0, 2, 0)$ is a minimum point.7At $x = 0$ there is a local minimum value = -2, and $(0, 2, 0)$ is a minimum point.7At $x = 0$ there is a local minimum value = -2, and $(0, 2, 0)$ is a minimum point.7At $x = 1$ there is a local minimum value ≈ 0.69 , and $(0, 0.69)$ is a minimum point.8At $x = 1$ there is a local minimum value $= -e$, and $(1, -e)$ is a minimum point.		Re	lated tim rates:				
(3)150 cm³/min , 3 min.(4)10 cm(5) $\frac{-3}{4}$, $\frac{-3}{25}$ (6)19.3(7) $\frac{1}{28}$ (8)75 cm²/min(9) $\frac{-3}{8}$, 2.5 $\sqrt{2}$ (10) $\frac{4}{13}$ (11)1.5 , 4.5 , 2.4(12) $\frac{7}{44}$, 17.6 BEHAVIOR OF THE FUNCTION 1The function is increasing $\forall x \in]0$, $\frac{\pi}{4} [\cup] \frac{3\pi}{4}$, $\frac{5\pi}{4} [$ and decreasig $\forall x \in]\frac{\pi}{4}$, $\frac{5\pi}{4} [$ 2The function is increasing $\forall x \in]0$, $\infty [$ and decreasig $\forall x \in]-\infty$, $0[$ 3The function is increasing on its domaiin.4At x = 2 there is a local maximum value = 30, and(2, 30) is a maximum point.5At x = 1 there is a local minimum value = 26, and(4, 26) is a minimum point.6At x = 2 there is a local maximum value = -2, and(1, 2) is a minimum point.7At x = 0 there is a local minimum value = 2, and(0, 2) is a minimum point.7At x = 0 there is a local minimum value = -2, and(0, 0.69) is a minimum point.8At x = 1 there is a local minimum value = -e, and(1, -e) is a minimum point.		(1)	$-4 \text{ cm}^2/\text{sec}$	(2)	$0.54 \text{ cm}^3/\text{min}$		
(5) $\frac{-3}{4}$, $\frac{-3}{25}$ (6)19.3(7) $\frac{3}{28}$ (8)75 cm²/min(9) $\frac{-3}{8}$, 2.5 $\sqrt{2}$ (10) $\frac{-4}{13}$ (11)1.5, 4.5, 2.4(12) $\frac{7}{44}$, 17.6 BEHAVIOR OF THE FUNCTION 1The function is increasing $\forall x \in]0$, $\frac{\pi}{4} [\cup] \frac{3\pi}{4}$, $\frac{5\pi}{4} [$ and decreasig $\forall x \in]\frac{\pi}{4}$, $\frac{5\pi}{4} [$ 2The function is increasing $\forall x \in]0$, $\infty [$ and decreasig $\forall x \in]-\infty$, $0[$ 3The function is increasing on its domaiin.4At x = 2 there is a local maximum value = 30, and(2, 30) is a maximum point.5At x = 1 there is a local minimum value = 2, and(1, 2) is a minimum point.6At x = 2 there is a local minimum value = -2, and(2, -2) is a minimum point.7At x = 0 there is a local minimum value = 2, and(0, 2) is a minimum point.8At x = 1 there is a local minimum value = -e, and(1, -e) is a minimum point.		(3)	$150 \text{ cm}^3/\text{min}$, 3 min.	(4)	10 cm		
(7) $\frac{3}{28}$ (8)75 cm²/min(9) $\frac{-3}{8}$, 2.5 $\sqrt{2}$ (10) $\frac{-4}{13}$ (11)1.5, 4.5, 2.4(12) $\frac{7}{44}$, 17.6BEHAVIOR OF THE FUNCTION1The function is increasing $\forall x \in]0$, $\frac{\pi}{4} [\cup] \frac{3\pi}{4}$, $\frac{5\pi}{4} [$ and decreasig $\forall x \in]\frac{\pi}{4}$, $\frac{5\pi}{4} [$ 2The function is increasing $\forall x \in]0$, $\infty [$ and decreasig $\forall x \in]-\infty$, $0[$ 3The function is increasing on its domaiin.4At $x = 2$ there is a local maximum value = 30, and (2, 30) is a maximum point.5At $x = 1$ there is a local minimum value = 26, and (4, 26) is a minimum point.6At $x = 2$ there is a local minimum value = -2, and (2, -2) is a maximum point.7At $x = 0$ there is a local minimum value = 2, and (0, 2) is a minimum point.7At $x = 0$ there is a local minimum value = -2, and (0, 0, 0.69) is a minimum point.8At $x = 1$ there is a local minimum value = -2, and (0, 0, 0.69) is a minimum point.8At $x = 1$ there is a local minimum value = -2, and (0, 0, 0.69) is a minimum point.8At $x = 1$ there is a local minimum value = -2, and (0, 0, 0.69) is a minimum point.8At $x = 1$ there is a local minimum value = -2, and (0, 0, 0.69) is a minimum point.8At $x = 1$ there is a local minimum value = -2, and (0, 0, 0.69) is a minimum point.		(5)	$\frac{-3}{4}, \frac{-3}{25}$	(6)	19.3		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(7)	3/28	(8)	75 cm ² /min		
(11) 1.5 , 4.5 , 2.4 (12) $\frac{\tau}{44}$, 17.6 BEHAVIOR OF THE FUNCTION 1 The function is increasing $\forall x \in \left]0, \frac{\pi}{4}\right[\cup\right]\frac{3\pi}{4}, \frac{5\pi}{4}\right[$ and decreasig $\forall x \in \left]\frac{\pi}{4}, \frac{5\pi}{4}\right[$ 2 The function is increasing $\forall x \in]0, \infty[$ and decreasig $\forall x \in]-\infty, 0[$ 3 The function is increasing on its domaiin. 4 At x = 2 there is a local maximum value = 30, and(2, 30) is a maximum point. 5 At x = 1 there is a local minimum value = 26, and(4, 26) is a minimum point. 5 At x = 1 there is a local maximum value = -2, and(1, 2) is a minimum point. 6 At x = 0 there is a local minimum value = 2, and(0, 2) is a minimum point. 7 At x = 0 there is a local minimum value = -e, and(1, -e) is a minimum point.		(9)	$\frac{-3}{8}$, 2.5 $\sqrt{2}$	(10)	$\frac{-4}{13}$		
BEHAVIOR OF THE FUNCTION1The function is increasing $\forall x \in \left]0, \frac{\pi}{4}\right[\cup \left]\frac{3\pi}{4}, \frac{5\pi}{4}\right[$ and decreasig $\forall x \in \left]\frac{\pi}{4}, \frac{5\pi}{4}\right[$ 2The function is increasing $\forall x \in \left]0, \infty\right[$ and decreasig $\forall x \in \left]-\infty, 0\right[$ 3The function is increasing on its domaiin.4At x = 2 there is a local maximum value = 30, and(2, 30) is a maximum point.5At x = 4 there is a local minimum value = 26, and(4, 26) is a minimum point.6At x = 2 there is a local maximum value = -2, and(1, 2) is a maximum point.6At x = 0 there is a local minimum value = 2, and(0, 2) is a minimum point.7At x = 0 there is a local minimum value = -e, and(0, 0.69) is a minimum point.8At x = 1 there is a local minimum value = -e, and(1, -e) is a minimum point.		(11)	1.5 , 4.5 , 2.4	(12)	$\frac{7}{44}$, 17.6		
1The function is increasing $\forall x \in \left[0, \frac{\pi}{4}\right] \cup \left[\frac{3\pi}{4}, \frac{5\pi}{4}\right]$ and decreasig $\forall x \in \left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$ 2The function is increasing $\forall x \in \left[0, \infty\right]$ and decreasig $\forall x \in \left[-\infty, 0\right]$ 3The function is increasing on its domaiin.4At x = 2 there is a local maximum value = 30, and(2, 30) is a maximum point.5At x = 4 there is a local minimum value = 26, and(4, 26) is a minimum point.5At x = 1 there is a local minimum value = 2, and(1, 2) is a minimum point.6At x = 2 there is a local minimum value = -2, and(2, -2) is a maximum point.7At x = 0 there is a local minimum value = 2, and(0, 2) is a minimum point.8At x = 1 there is a local minimum value = -e, and(1, -e) is a minimum point.			BEHAVIOR OF TH	E FUN	CTION		
2The function is increasing $\forall x \in]0$, $\infty[$ and decreasig $\forall x \in]-\infty$, $0[$ 3The function is increasing on its domaiin.4At $x = 2$ there is a local maximum value = 30, and $(2, 30)$ is a maximum point.4At $x = 4$ there is a local minimum value = 26, and $(4, 26)$ is a minimum point.5At $x = 1$ there is a local minimum value = 2, and $(1, 2)$ is a minimum point.6At $x = 2$ there is a local minimum value = -2, and $(2, -2)$ is a maximum point.7At $x = 0$ there is a local minimum value = 2, and $(0, 2)$ is a minimum point.8At $x = 1$ there is a local minimum value = -e, and $(1, -e)$ is a minimum point.	1	The f	unction is increasing $\forall x \in \left[0, \frac{\pi}{4}\right] \cup \left[\frac{3\pi}{4}\right]$,	$\frac{5\pi}{4}$ an	d decreasig $\forall x \in \left \frac{\pi}{4}, \frac{5\pi}{4}\right $		
 3 The function is increasing on its domaiin. 4 At x = 2 there is a local maximum value = 30, and(2, 30) is a maximum point. At x = 4 there is a local minimum value = 26, and(4, 26) is a minimum point. 5 At x = 1 there is a local minimum value = 2, and(1, 2) is a minimum point. 6 At x = 2 there is a local maximum value = -2, and(2, -2) is a maximum point. At x = 0 there is a local minimum value = 2, and(0, 2) is a minimum point. 7 At x = 0 there is a local minimum value ≈ 0.69, and(0, 0.69) is a minimum point. 8 At x = 1 there is a local minimum value = - e, and(1, -e) is a minimum point. 	2	The function is increasing $\forall x \epsilon] 0$, $\infty [$ and decreasig $\forall x \epsilon] -\infty$, $0 [$					
4At $x = 2$ there is a local maximum value = 30, and(2, 30) is a maximum point. At $x = 4$ there is a local minimum value = 26, and(4, 26) is a minimum point.5At $x = 1$ there is a local minimum value = 2, and(1, 2) is a minimum point.6At $x = 2$ there is a local maximum value = -2, and(2, -2) is a maximum point.7At $x = 0$ there is a local minimum value = 2, and(0, 2) is a minimum point.7At $x = 0$ there is a local minimum value ≈ 0.69 , and(0, 0.69) is a minimum point.8At $x = 1$ there is a local minimum value = - e, and(1, -e) is a minimum point.	3	The f	unction is increasing on its domaiin.				
5At x = 1 there is a local minimum value = 20, and (1, 20) is a minimum point.6At x = 2 there is a local maximum value = 2, and (2, -2) is a maximum point.6At x = 0 there is a local minimum value = 2, and (0, 2) is a minimum point.7At x = 0 there is a local minimum value = 2, and (0, 2) is a minimum point.8At x = 1 there is a local minimum value = - e, and (1, -e) is a minimum point.	4	At x =	= 2 there is a local maximum value = 30 , = 4 there is a local minimum value = 26	and (2)	, 30) is a maximum point.		
$\begin{array}{l} 6\\ 6\\ 7\\ 7\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\$	5	At x =	= 1 there is a local minimum value = 2, at	nd(1.)	2) is a minimum point.		
\circ At x = 0 there is a local minimum value = 2, and(0, 2) is a minimum point.7At x = 0 there is a local minimum value $\simeq 0.69$, and(0, 0.69) is a minimum point.8At x = 1 there is a local minimum value = - e, and(1, -e) is a minimum point.	6	At x =	= 2 there is a local maximum value = - 2,	and(2	,-2) is a maximum point.		
7At x = 0 there is a local minimum value ≈ 0.69 , and $(0, 0.69)$ is a minimum point.8At x = 1 there is a local minimum value = - e, and $(1, -e)$ is a minimum point.	5	At x =	= 0 there is a local minimum value = 2, and $\frac{1}{2}$	nd(0,2	2) is a minimum point.		
8 At $x = 1$ there is a local minimum value = - e, and (1, -e) is a minimum point.	7	At $x =$	= 0 there is a local minimum value $\simeq 0.6^{\circ}$	9, and $\frac{1}{1}$	(0, 0.69) is a minimum point.		
	8	At x =	= 1 there is a local minimum value = $-e_{1}$	and (1	,-e) is a minimum point.		

Differential & integral Calculus

مكتب مستشار الرياضيات

Differential & integral Calculus

9	At $x = 1$ the	ere is a local mi	nimum value = - e, and $(1, -e)$	is a m	inimum point	
10	The curve i	is convex upwa	rds $\forall x \in \left] -\infty, \frac{-2}{3} \right[$, downwards	$\forall x \epsilon$	$\left \frac{-2}{3}\right \infty$	
10	And $\left(\frac{-2}{3}\right)$,	$\frac{-128}{27}$) is inflec	tion point.			
11	A = -6, b =	= 9				
12	(i) The abs	olute maximun	h value = 17 at x = 2, the absolut	te mini	mum value =10 at $x = 3$	
12	(ii)The ab	solute maximu	m value = e at x = 1, the absolut	e mini	mum value = 0 at $x = 0$	
	point	Its kind				
	(1,4)	maximum				
12	(-1,0)	minimum			$\langle \chi \rangle$	
15	(0,2)	iflection		2		
	(2,0)	On x-axis				
	(-2, 4) assistant			100		
	APPLICATIONS OF MAXIMUMA AND MINIMUMA					
1	$13\sqrt{2}, 13\sqrt{2}cm$			4	prove	
2	$5\sqrt{5}$ hength unit			5	6 cm , 9 cm	
3	3 square unit			6	6,12 and 8cm	

INTEGRATION

FIRS	ST
1	$\mathbf{x} + \mathbf{c}$
2	$-\left(1+\sqrt{x}\right)^{-2}+c$
3	$\frac{2}{35}\sqrt{(x-1)^3}(5x^2+4x+61)+c$
4	$\frac{-1}{2}x e^{-2x} - \frac{1}{4}e^{-2x} + c$
5	$4\sqrt{x}\ln\sqrt{x} - 4\sqrt{x} + c$
6	$x \cos x - \sin x + c$
7	$\frac{3}{5}(2x+1)^{\frac{5}{3}} - \frac{3}{2}(2x+1)^{\frac{2}{3}} + c$
8	$2\sqrt{x}e^{\sqrt{x}} - 2e^{\sqrt{x}} + c$
9	$\frac{-1}{x}\ln x - x^{-1} + c$

Differential & integral Calculus

10	$\frac{1}{2}x^2(\ln x)^2 - \frac{1}{2}x^2\ln x + \frac{1}{4}x^2 + c$
11	$\frac{-1}{3}x^2(4-x^2)^{\frac{3}{2}} - \frac{2}{15}(4-x^2)^{\frac{5}{2}} + c$
12	$\frac{1}{6}(3+\sin x)^6 + c$
13	$\tan \ln x + c$
14	$\frac{1}{27} \left[\frac{3}{10} (3x+1)^{\frac{10}{3}} - \frac{6}{7} (3x+1)^{\frac{7}{3}} + \frac{3}{4} (3x+1)^{\frac{4}{3}} \right] + c$
15	$(x+1)\ln(x+1) - x + c$
16	$\frac{1}{4}x^4 \ln x - \frac{1}{16}x^4 + c$
17	$x \tan x + \ln \cos x + c$
18	$\frac{-1}{2}(3x+5)^{e^{-2x}} - \frac{3}{4}e^{-2x} + c$
19	$\frac{e^x}{x+1} + c$
20	$\frac{46}{3}$

26

SECOND	
1	5
2	$y = x^2 + \tan\frac{x}{2} + 10$
3	$y = 2 \cot x + 3$
4	$y = \sin^2 x + \frac{3}{4}$
5	$3y^2 + \sqrt{y^3} = 18x + 6$
6	$y = x^2 - x^3 + 8x - 5$
7	$y^2 = 6 x - x^2$
8	$y^2 = x^3 - \frac{3}{2}x^2$
9	The local maximum value = 30
10	8 square unit
11	4 square unit
12	13 square unit
13	8 square unit
14	The cost 0f covering the five corridors = 69000 L.E.
15	$\frac{3}{10}\pi$
16	$\frac{8}{3}\pi$
17	$\frac{4}{3}\pi a b^2$