1) If
$${}^8 \mathbf{p_r}$$
 = 6720 , find $|\mathbf{r}+1|$

2) Evaluate
$${}^{n}\mathbf{P}_{0} + {}^{n}\mathbf{P}_{1} + {}^{n}\mathbf{P}_{2}$$
 given that $|\underline{n+1} \div |\underline{n-1}| = 72$

3) Prove that
$${}^{n}\mathbf{p}_{r} = {}^{n-1}\mathbf{p}_{r} + \mathbf{r}^{n-1}\mathbf{p}_{r-1}$$

4) P. that
$${}^{n}C_{r}$$
: ${}^{n-1}C_{r-1} = \frac{n}{r}$ then evaluate $\frac{{}^{25}C_{4} + {}^{24}C_{3}}{{}^{24}C_{3} + {}^{23}C_{2}}$

5) Find
$${}^{n}C_{7r+3}$$
 where ${}^{n}C_{3} = 120$, ${}^{n}C_{r^{2}+2r} = {}^{n}C_{2r+5}$

7) If the value of the middle term in the expansion of $(x^2 + \frac{1}{2x})^{10}$ equals $\frac{28}{27}$, evaluate x.

- 8) Calculate the coefficient of x^5 in the expansion of
 - $(\frac{\mathbf{x}^2}{2} \frac{3}{\mathbf{x}})^{10}$

9) Find with respect to the expansion ($x + \frac{3}{2x^2}$)¹²

- a) the coefficient of x^6
- b) the order of the term free of x

10) Let a , b be the two middle terms in the expansion of $(x-\frac{1}{x})^{15}$ according to the descending order of the power of x , prove that a + b $x^2 = 0$

11) prove that the expansion of $(x^2 + \frac{1}{x})^n$ includes a term free of x if n is multiple of 3, then find the term free of x when n = 12.

12) The ratio between the 5th , 6th terms in the expansion of $(x^2 + \frac{2}{x})^8$ equals 25 : 8 evaluate x .

13) In the expansion (3 + x)ⁿ according to the descending order of the power of x , if $T_{10} = \frac{2}{3} T_9$, $T_{14} = 4 T_{15}$ evaluate n , x 14) T_3 , T_4 , T_5 in expansion (x + y)ⁿ are 112, 448, 1120 respectively, evaluate x, y, n.

15) The ratio between T_2 , T_3 in (A + B)ⁿ equals the ratio between T_3 , T_4 In (A + B)ⁿ⁺³, find n

16) The ratio among the three coefficient of three consecutive terms in the expansion of (1 + x)ⁿ are 15 : 24 : 28, evaluate n, and find the order of these terms.

17) Consider the expansion ($2x + \frac{3}{x^2}$)ⁿ. T₉ = T₁₀, the ratio

of T_6 , T_7 equals 8 : 15, find n, then prove that there exists no term free of x in this expansion.

18) find each of the middle term and the term includes x ⁻³ in the expansion $(\frac{2x}{3} + \frac{3}{2x^2})^{12}$, if the ratio between these two terms is 7 : 9 find x

- 19) Find with respect to the expansion of ($4x^2 + \frac{1}{2x}$)¹⁵
 - a) The coefficient of x⁴
 - b) The value of the term free of x
 - c) The value of x which makes the two middle terms equal.

20) If (2 – i) is one of the two roots of the equation $x^2 + bx + 1 = 0$ then find b.

21) If (-3) is a root of the equation $x^3 + x^2 - x + 15 = 0$, find the other two roots.

22) Solve the equation $2z + 3\overline{z} = 5$

23) If (-1) is a root of the equation $x^3 - x^2 + 2 = 0$ show that the other two roots are conjugate to each other.

24) Let
$$z_1 = 10 (\cos \Theta + i \sin \Theta)$$
,
 $z_2 = \frac{1}{2} (\sin 2\Theta + i \cos 2\Theta)$, $\tan \Theta = \frac{3}{4}$, $0 < \Theta < 90$,
find the trigonometric and the algebraic form of the

product $z_1 z_2$.

25) Find
$$\left(\frac{1-\mathbf{i}}{1+\mathbf{i}}\right)^4$$

26) Put each of the numbers $\sqrt{2}i$, 1 + i in the trigonometric form and use it to find $\left(\frac{\sqrt{2}i}{1+i}\right)^6$

27) Find the square roots of the complex number $z = 2 + 2\sqrt{3}i$

28) Find the real values of x , y which satisfy the equation $(x + iy)^2 (1 + i) + 7 - i = 0$

29) If $(x + i y)^2 = \frac{11+i}{1+2i}$, find the real values of x, y.

30) If x =
$$\frac{1+i}{1-i}$$
, y = $\frac{1-i}{1+i}$, then find $(3x^{12} + 4y^{15})^{\frac{1}{2}}$

31) Solve the equation $x^2 - 2x + 4 = 0$

32) Prove that $(1 + w + 5 w^2) (1 - 2 w - w^2) = 18$

33) Prove that $\frac{3}{2}i$ is one of the square roots of the equation $\left(\frac{1+10w+10w^2}{1-3w-3w^2}\right)$

34) Prove that $w^2 - w = \pm i\sqrt{3}$ hence evaluate: $\left[\frac{5-3w^2}{5w-3} - \frac{2-7w}{2w^2-7}\right]^4$

35) Prove that $(2 + 5 w + 2 w^2)^6 (2 + 2 w + 5 w^2)^6 = 729$

36) If x = a + b, $y = aw + b w^2$, $z = aw^2 - bw$ then prove that a) $xyz = a^3 + b^3$ b) $x^2 + y^2 + z^2 = 6 a b$

37) Form the quadratic equation whose roots are $(1 + w - w^2)^3$, $(1 - w + w^2)^3$

38) Show that: $\begin{vmatrix} x & a & a \\ a & x & a \\ a & a & x \end{vmatrix} = (x + 2a) (x - a)^2$

	x	1	0
39) Find k that makes x is a factor of	-3	2	3
	$ -\boldsymbol{x}+\boldsymbol{k} $	5	x – k

40) Evaluate

$$egin{array}{rcl} a^2+1 & ab & ac\ ab & b^2+1 & bc\ ac & bc & c^2+1 \end{array}$$

41) Evaluate

$$\begin{vmatrix} a_1 + ib_1 & a_1i + b_1 & c_1 \\ a_2 + ib_2 & a_2i + b_2 & c_2 \\ a_3 + ib_3 & a_3i + b_3 & c_3 \end{vmatrix}$$